2 resultados para Clique vertex irreducible graphs

em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se estudiará la geometría de subvariedades haciendo hincapié en los grupos de holonomia de la conexión normal, herramienta que ha sido muy útil para atacar diversos problemas clásicos. Se estudiarán los siguientes problemas concretos: a) Resolver la conjetura de que toda subvariedad homogénea irreducible y substancial de la esfera cuyo grupo de holonomia normal no actúa transitivamente en la esfera es una órbita de la representación isotrópica de un espacio simétrico simple. b) ¿Existe alguna relación entre la noción de rango para espacios de curvatura no positiva y la noción de rango de una subvariedad? Respecto al rango de las variedades riemannianas se intenta probar un teorema general de descomposición para variedades riemannianas tal que toda geodésica esté contenida en un flat compacto. (...) Intentará generalizar los siguientes teoremas, válidos para flujos, a extensiones entre flujos, usando el concepto de semigrupo envolvente de una extensión. 1. X métrico y los elementos de E(X) son continuos, entonces E(X) es métrico. 2. Si se agrega la hipótesis de minimal, entonces X es equicontinuo. 3. X minimal, los elementos de E(X) de continuos y T contable entonces es equicontinuo. 4. X minimal y E(X) conmutativo entonces X es equicontinuo. 5. X distal y los elementos de E(X) son continuos, entonces X es equicontinuo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este proyecto cuenta con 7 subproyectos.Subproyecto: Restricciones de representaciones de cuadrado integrable.Se continuará trabajando en el problema de restringir representaciones de cuadrado integrable en un grupo de Lie a un subgrupo semisimple o la factor unipotente de un subgrupo parabólico. En particular, se continuará analizando el caso de restringir desde el grupo SO(2n,1) al subgrupo SO(2) x SO(2n-2,1) y al factor unipotente del parabólico minimal de un grupo de Lie clásico de rango uno. Subproyecto: Representación metapléctica y grupos de Heisenberg generalizados. Se estudia la restricción de la representación metapléctica a subgrupos del grupo metapléctico. Subproyecto: Álgebras de tipo H. Se estudiarán estructuras de biálgebra en las álgebras de tipo H, álgebras de Lie nilpotentes de dos etapas. Se continuará con el estudio de cuantizaciones de álgebras de tipo H. Se estudiarán propiedades geométricas de las funciones theta generalizadas que surgen de álgebras de tipo H. Subproyecto: Módulos de peso máximo. Se intenta dar una respuesta al problema de clasificación de módulos quasifinitos de peso máximo sobre ciertas álgebras de dimensión infinita. Subproyecto: Cuantización de las álgebras de tipo H. Se tratará de cuantizar las álgebras de tipo H, álgebras de Lie nilpotentes de dos etapas. Se trabajará con una definición más general de las álgebras de Heisenberg, tratando de encontrar teoremas tipo Stone-Von Neumann y generalizaciones de las funciones theta. Subproyecto: Continuación analítica de integrales de coeficientes matriciales. Se analiza la existencia de continuación holomorfa de la integral a lo largo de un grupo semisimple real de las potencias complejas de un coeficiente matricial de una representación irreducible admisible. Subproyecto: Cálculo explícito de soluciones fundamentales de operadores invariantes. Se analizan condiciones en el polinomio que define un operador diferencial k-invariante para que resulte hipoellítico. Se trata en particular el caso del grupo SO(n,1). Subproyecto 7: Generadores de Goldie. Se trata de encontrar algoritmos para el cálculo de generadores de Goldie.