2 resultados para BATIO3-COFE2O4 NANOSTRUCTURES
em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina
Resumo:
La síntesis de materiales cristalinos micro y mesoporosos con incorporación de micro/nano partículas/clusters de especies formadas con entidades propias interaccionando con las redes, como óxidos de metales, cationes de neutralización, especies metálicas, etc., pueden potencialmente ser utilizados como "materiales hospedaje" en óptica, electrónica, sensores, como materiales magnéticos, en estrategias ambientales de control de la contaminación, catálisis en general y procesos de separación. Se sintetizaran y caracterizaran por diversas técnicas fisicoquímicas, zeolitas microporosas de poro medio (ZSM) y poro grande (Y), y materiales mesoporosos (MCM-41). La aplicación de los mismos se orientara, por una parte, a procesos catalíticos tecnológicamente innovadores relacionados con los siguientes campos: a)catálisis ambiental: transformación de desechos plásticos (polietileno, polipropileno, poliestireno o mezclas de los mismos) a hidrocarburos de mayor valor agregado (gasolinas, gasoil, gases licuados de petróleo, hidrocarburos aromáticos); b)química fina: oxidación parcial de hidrocarburos aromáticos hacia la obtención de commodities, fármacos, etc. Por otra parte, se evaluaran las propiedades magnéticas (ferromagnetismo, paramagnetismo, superparamagnetismo, diamagnetismo) que algunos de estos materiales presentan, en busca de su correlación con sus propiedades catalíticas, cuando sea factible. Se estudiaran las condiciones óptimas de síntesis de los materiales, aplicando técnicas hidrotermicas o sol gel, controlando variables como temperaturas y tiempos de síntesis, pH de geles iniciales-intermedios-finales, tipo de fuentes precursoras, etc. La modificación de las matrices con Co, Cr, Mn, H, o Zn, se realizara mediante diversos tratamientos químicos (intercambio, impregnación) a partir de las sales correspondientes, con el objeto de incorporar elementos activos al estado iónico, metálico, clusters, etc.; y la influencia de distintos tratamientos térmicos (oxidantes, inertes o reductores; atmósferas dinámicas o estáticas; temperaturas). La caracterización estructural de los materiales será por: AA (cuantificación elemental de bulk); XRD (determinacion de presencia de especies oxidos o metalicas de Zn, Co, Cr, o Mn; determinacion de cristalinidad y estructura); BET (determinacion de area superficial); DSC-TG-DTA (determinacion de estabilidad de las matrices sintetizadas); FTIR de piridina (determinacion de tipo-fuerza-cantidad de sitios activos); Raman y UV-reflectancia difusa (determinacion de especies ionicas interacturando o depositadas sobre las matrices); TPR (identificacion de especies reducibles); SEM-EDAX (determinacion de tamaño de particulas de especies activas y de las matrices y cuanfiticacion superficial); Magnetómetros SQUID y de muestra vibrante (medición de magnetización y susceptibilidad magnética a temperatura ambiente con variación de campo externo aplicado, y variación de temperaturas (4 a 300 K) con campo externo fijo). En síntesis, se plantean tres grandes áreas de trabajo: No1)Síntesis y caracterización de materiales micro y mesoporosos nanoestructurados; No2) Evaluación de las propiedades catalíticas; No3) Evaluación de las propiedades magnéticas. Estos lineamientos nos permitirán generar nuevos conocimientos científicos-tecnológicos, formando recursos humanos (dos becarios posdoctorales; un becario doctoral; tres becarios alumnos de investigación; aproximadamente 15 pasantes de grado al año) aptos para emprender tales desafíos. Los conocimientos originados son constantemente trabajados en las actividades docentes de grado y posgrado que los integrantes del proyecto poseen. Finalmente serán transmitidos y puestos a consideración de pares evaluadores en presentaciones a congresos nacionales e internacionales y revistas especializadas.
Resumo:
Los requerimientos de métodos analíticos que permitan realizar determinaciones más eficientes en diversas ramas de la Química, así como el gran desarrollo logrado por la Nanobiotecnología, impulsaron la investigación de nuevas alternativas de análisis. Hoy, el campo de los Biosensores concita gran atención en el primer mundo, sin embargo, en nuestro país es todavía un área de vacancia, como lo es también la de la Nanotecnología. El objetivo de este proyecto es diseñar y caracterizar nuevos electrodos especialmente basados en el uso de nanoestructuras y estudiar aspectos básicos de la inmovilización de enzimas, ADN, aptámeros, polisacáridos y otros polímeros sobre dichos electrodos a fin de crear nuevas plataformas de biorreconocimiento para la construcción de (bio)sensores electroquímicos dirigidos a la cuantificación de analitos de interés clínico, farmaco-toxicológico y ambiental.Se estudiarán las propiedades de electrodos de C vítreo, Au, "screen printed" y compósitos de C modificados con nanotubos de C (CNT) y/o nanopartículas (NP) de oro y/o nanoalambres empleando diversas estrategias. Se investigarán nuevas alternativas de inmovilización de las biomoléculas antes mencionadas sobre dichos electrodos, se caracterizarán las plataformas resultantes y se evaluarán sus posibles aplicaciones analíticas al desarrollo de biosensores con enzimas y ADNs como elementos de biorreconocimiento. Se funcionalizarán CNT con polímeros comerciales y sintetizados en nuestro laboratorio modificados con moléculas bioactivas. Se diseñarán y caracterizarán nuevas arquitecturas supramoleculares basadas en el autoensamblado de policationes, enzimas y ADNs sobre Au. Se evaluarán las propiedades catalíticas de NP de magnetita y de perovskitas de Mn y su aplicación al desarrollo de biosensores enzimáticos. Se diseñarán biosensores que permitan la detección altamente sensible y selectiva de secuencias específicas de ADNs de interés clínico. Se estudiará la interacción de genotóxicos con ADN (en solución e inmovilizado) y se desarrollarán biosensores que permitan su cuantificación. Se construirán biosensores enzimáticos para la cuantificación de bioanalitos, especialmente glucosa, fenoles y catecoles, y sensores electroquímicos para la determinación de neurotransmisores, ácido úrico y ácido ascórbico. Se diseñarán nuevos aptasensores electroquímicos para la cuantificación de biomarcadores, comenzando por lisozima y trombina y continuando con otros de interés regional/nacional.Se emplearán las siguientes técnicas: voltamperometrías cíclica (CV), de pulso diferencial (DPV) y de onda cuadrada (SWV); "stripping" potenciométrico a corriente constante (PSA); elipsometría; microbalanza de cristal de cuarzo con cálculo de pérdida de energía por disipación (QCM-D); resonancia de plasmón superficial con detección dual (E-SPR); espectroscopía de impedancia electroquímica (EIE); microscopías de barrido electroquímico (SECM), de barrido electrónico (SEM), de transmisión (TEM) y de fuerzas atómicas (AFM); espectrofotometría UV-visible; espectroscopías IR, Raman, de masas, RMN.Se espera que la inclusión de los CNT y/o de las NP metálicas y/o de los nanoalambres en los diferentes electrodos permita una mejor transferencia de carga de diversos analitos y por ende una detección más sensible y selectiva de bioanalitos empleando enzimas, ADN y aptámeros como elementos de biorreconocimiento. Se espera una mayor eficiencia en los aptasensores respecto de los inmunosensores, lo que permitirá la determinacion selectiva de diversos biomarcadores. La modificación de electrodos con nanoestructuras posibilitará la detección altamente sensible y selectiva del evento de hibridación. La respuesta obtenida luego de la interacción de genotóxicos con ADN permitirá un mejor conocimiento de la asociación establecida, de la cinética y de las constantes termodinámicas. Los neurotransmisores podrán ser determinados a niveles nanomolares aún en muestras complejas.