2 resultados para wavelets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autonomic nervous system (ANS) is known to be an important modulator in the pathogenesis of paroxysmal atrial fibrillation (PAF). Changes in ANS control of heart rate variability (HRV) occur during orthostatism to maintain cardiovascular homeostasis. Wavelet transform has emerged as a useful tool that provides time-frequency decomposition of the signal under investigation, enabling intermittent components of transient phenomena to be analyzed. AIM: To study HRV during head-up tilt (HUT) with wavelet transform analysis in PAF patients and healthy individuals (normals). METHODS: Twenty-one patients with PAF (8 men; age 58 +/- 14 yrs) were examined and compared with 21 normals (7 men, age 48 +/- 12 yrs). After a supine resting period, all subjects underwent passive HUT (60 degrees) while in sinus rhythm. Continuous monitoring of ECG and blood pressure was carried out (Task Force Monitor, CNSystems). Acute changes in RR-intervals were assessed by wavelet analysis and low-frequency power (LF: 0.04-0.15 Hz), high-frequency power (HF: 0.15-0.60 Hz) and LF/HF (sympathovagal) were calculated for 1) the last 2 min of the supine period; 2) the 15 sec of tilting movement (TM); and 3) the 1st (TT1) and 2nd (TT2) min of HUT. Data are expressed as means +/- SEM. RESULTS: Baseline and HUT RR-intervals were similar for the two groups. Supine basal blood pressure was also similar for the two groups, with a sustained increase in PAF patients, and a decrease followed by an increase and then recovery in normals. Basal LF, HF and LF/ HF values in PAF patients were 632 +/- 162 ms2, 534 +/- 231 ms2 and 1.95 +/- 0.39 respectively, and 1058 +/- 223 ms2, 789 +/- 244 ms2 and 2.4 +/- 0.36 respectively in normals (p = NS). During TM, LF, HF and LF/HF values for PAF patients were 747 +/- 277 ms2, 387 +/- 94 ms2 and 2.9 +/- 0.6 respectively, and 1316 +/- 315 ms2, 698 +/- 148 ms2 and 2.8 +/- 0.6 respectively in normals (p < 0.05 for LF and HF). During TF1, LF, HF and LF/ HF values for PAF patients were 1243 +/- 432 ms2, 302 +/- 88 ms2 and 7.7 +/- 2.4 respectively, and 1992 +/- 398 ms2, 333 +/- 76 ms2 and 7.8 +/- 0.98 respectively for normals (p < 0.05 for LF). During TF2, LF, HF and LF/HF values for PAF patients were 871 +/- 256 ms2, 242 +/- 51 ms2 and 4.7 +/- 0.9 respectively, and 1263 +/- 335 ms2, 317 +/- 108 ms2 and 8.6 +/- 0.68 respectively for normals (p < 0.05 for LF/HF). The dynamic profile of HRV showed that LF and HF values in PAF patients did not change significantly during TM or TT2, and LF/HF did not change during TM but increased in TT1 and TT2. CONCLUSION: Patients with PAF present alterations in HRV during orthostatism, with decreased LF and HF power during TM, without significant variations during the first minutes of HUT. These findings suggest that wavelet transform analysis may provide new insights when assessing autonomic heart regulation and highlight the presence of ANS disturbances in PAF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atrial electrical remodeling plays a part in recurrence of atrial fibrillation (AF). It has been related to an increase in heterogeneity of atrial refractoriness that facilitates the occurrence of multiple reentry wavelets and vulnerability to AF. AIM: To examine the relationship between dispersion of atrial refractoriness (Disp_A) and vulnerability to AF induction (A_Vuln) in patients with clinical paroxysmal AF (PAF). METHODS: Thirty-six patients (22 male; age 55+/-13 years) with > or =1 year of history of PAF (no underlying structural heart disease--n=20, systemic hypertension--n=14, mitral valve prolapse--n=1, surgically corrected pulmonary stenosis--n=1), underwent electrophysiological study (EPS) while off medication. The atrial effective refractory period (AERP) was assessed at five different sites--high (HRA) and low (LRA) lateral right atrium, high interatrial septum (IAS), proximal (pCS) and distal (dCS) coronary sinus--during a cycle length of 600 ms. AERP was taken as the longest S1-S2 interval that failed to initiate a propagation response. Disp_A was calculated as the difference between the longest and shortest AERP. A_Vuln was defined as the ability to induce AF with 1-2 extrastimuli or with incremental atrial pacing (600-300 ms) from the HRA or dCS. The EPS included analysis of focal electrical activity based on the presence of supraventricular ectopic beats (spontaneous or with provocative maneuvers). The patients were divided into group A--AF inducible (n=25) and group B--AF not inducible (n=11). Disp_A was analyzed to determine any association with A_Vuln. Disp_A and A_Vuln were also examined in those patients with documented repetitive focal activity. Logistic regression was used to determine any association of the following variables with A_Vuln: age, systemic hypertension, left ventricular hypertrophy, left atrial size, left ventricular function, duration of PAF, documented atrial flutter/tachycardia and Disp_A. RESULTS: There were no significant differences between the groups with regard to clinical characteristics and echocardiographic data. AF was inducible in 71% of the patients and noninducible in 29%. Group A had greater Disp_A compared to group B (105+/-78 ms vs. 49+/-20 ms; p=0.01). Disp_A was >40 ms in 50% of the patients without A_Vuln and in 91% of those with A_Vuln (p=0.05). Focal activity was demonstrated in 14 cases (39%), 57% of them with A_Vuln. Disp_A was 56+/-23 ms in this group and 92+/-78 ms in the others (p=0.07). Using logistic regression, the only predictor of A_Vuln was Disp_A (p=0.05). CONCLUSION: In patients with paroxysmal AF, Disp_A is a major determinant of A_Vuln. Nevertheless, the degree of nonuniformity of AERP appears to be less important as an electrophysiological substrate for AF due to focal activation.