2 resultados para thermogravimetry and differential thermal analysis
Resumo:
To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-major resistance mutations were detected in the virus population from naïve patients, but two amino acids that are secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and contribute to improve the clinical monitoring of HIV-2-infected patients.
Resumo:
PURPOSE: To determine the correlation between ocular blood flow velocities and ocular pulse amplitude (OPA) in glaucoma patients using colour Doppler imaging (CDI) waveform analysis. METHOD: A prospective, observer-masked, case-control study was performed. OPA and blood flow variables from central retinal artery and vein (CRA, CRV), nasal and temporal short posterior ciliary arteries (NPCA, TPCA) and ophthalmic artery (OA) were obtained through dynamic contour tonometry and CDI, respectively. Univariate and multiple regression analyses were performed to explore the correlations between OPA and retrobulbar CDI waveform and systemic cardiovascular parameters (blood pressure, blood pressure amplitude, mean ocular perfusion pressure and peripheral pulse). RESULTS: One hundred and ninety-two patients were included [healthy controls: 55; primary open-angle glaucoma (POAG): 74; normal-tension glaucoma (NTG): 63]. OPA was statistically different between groups (Healthy: 3.17 ± 1.2 mmHg; NTG: 2.58 ± 1.2 mmHg; POAG: 2.60 ± 1.1 mmHg; p < 0.01), but not between the glaucoma groups (p = 0.60). Multiple regression models to explain OPA variance were made for each cohort (healthy: p < 0.001, r = 0.605; NTG: p = 0.003, r = 0.372; POAG: p < 0.001, r = 0.412). OPA was independently associated with retrobulbar CDI parameters in the healthy subjects and POAG patients (healthy CRV resistance index: β = 3.37, CI: 0.16-6.59; healthy NPCA mean systolic/diastolic velocity ratio: β = 1.34, CI: 0.52-2.15; POAG TPCA mean systolic velocity: β = 0.14, CI 0.05-0.23). OPA in the NTG group was associated with diastolic blood pressure and pulse rate (β = -0.04, CI: -0.06 to -0.01; β = -0.04, CI: -0.06 to -0.001, respectively). CONCLUSIONS: Vascular-related models provide a better explanation to OPA variance in healthy individuals than in glaucoma patients. The variables that influence OPA seem to be different in healthy, POAG and NTG patients.