2 resultados para scatter factor receptor
Resumo:
OBJECTIVE: To determine the prevalence of fibroblast growth factor receptor 1 (FGFR1) mutations and their predicted functional consequences in patients with idiopathic hypogonadotropic hypogonadism (IHH). DESIGN: Cross-sectional study. SETTING: Multicentric. PATIENT(S): Fifty unrelated patients with IHH (21 with Kallmann syndrome and 29 with normosmic IHH). INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Patients were screened for mutations in FGFR1. The functional consequences of mutations were predicted by in silico structural and conservation analysis. RESULT(S): Heterozygous FGFR1 mutations were identified in six (12%) kindreds. These consisted of frameshift mutations (p.Pro33-Alafs*17 and p.Tyr654*) and missense mutations in the signal peptide (p.Trp4Cys), in the D1 extracellular domain (p.Ser96Cys) and in the cytoplasmic tyrosine kinase domain (p.Met719Val). A missense mutation was identified in the alternatively spliced exon 8A (p.Ala353Thr) that exclusively affects the D3 extracellular domain of FGFR1 isoform IIIb. Structure-based and sequence-based prediction methods and the absence of these variants in 200 normal controls were all consistent with a critical role for the mutations in the activity of the receptor. Oligogenic inheritance (FGFR1/CHD7/PROKR2) was found in one patient. CONCLUSION(S): Two FGFR1 isoforms, IIIb and IIIc, result from alternative splicing of exons 8A and 8B, respectively. Loss-of-function of isoform IIIc is a cause of IHH, whereas isoform IIIb is thought to be redundant. Ours is the first report of normosmic IHH associated with a mutation in the alternatively spliced exon 8A and suggests that this disorder can be caused by defects in either of the two alternatively spliced FGFR1 isoforms.
Resumo:
Severe chronic kidney disease may lead to disturbances, such as hyperphosphatemia, increased secretion of fibroblast growth factor -23 (FGF -23) and vitamin D deficiency. These may increase plasmatic levels of parathyroid hormone, and decrease plasmatic levels of calcium. Altogether, these may contribute to the development of secondary hyperparathyroidism, and to abnormalities in mineral metabolism. Kidney transplantation is the best option to improve longevity and quality of life in end -stage chronic kidney disease patients. Vitamin D deficiency has been associated with cardiovascular disease, which is the leading cause of death in chronic kidney disease. Therefore, diagnosing this deficiency may be pivotal for minimizing mortality in chronic kidney disease, because pharmacological treatments for this deficiency may be prescribed. Calcitriol is indicated for the treatment of vitamin D deficiency, both in chronic kidney disease and in kidney transplanted patients. However, calcitriol may increase the plasmatic levels of calcium and phosphorous, which can lead to vascular calcifications, that have been associated with cardiovascular mortality. Selective vitamin D receptor activators are indicated for the treatment of vitamin D deficiency in chronic kidney disease. These have the advantage of being associated with lower increases of plasmatic levels of calcium and phosphorous. These drugs also seem to have additional effects that may minimise patient morbidity and mortality, especially due to potentially reducing cardiovascular events. Unfortunately, there are few studies about the use of these drugs in kidney transplanted patients. Here we present a review about the physiology of vitamin D, the consequences of its deficiency in chronic kidney disease and in kidney transplanted patients, and about the diagnosis and treatment of this deficiency. Finally, we discuss the new line of research about the efficacy and safety of selective vitamin D receptor activators in kidney transplanted patients.