4 resultados para regression discontinuity design
Resumo:
OBJECTIVE: Long-term follow-up after endovascular aneurysm repair (EVAR) is very scarce, and doubt remains regarding the durability of these procedures. We designed a retrospective cohort study to assess long-term clinical outcome and morphologic changes in patients with abdominal aortic aneurysms (AAAs) treated by EVAR using the Excluder endoprosthesis (W. L. Gore and Associates, Flagstaff, Ariz). METHODS: From 2000 to 2007, 179 patients underwent EVAR in a tertiary institution. Clinical data were retrieved from a prospective database. All patients treated with the Excluder endoprosthesis were included. Computed tomography angiography (CTA) scans were retrospectively analyzed preoperatively, at 30 days, and at the last follow-up using dedicated tridimensional reconstruction software. For patients with complications, all remaining CTAs were also analyzed. The primary end point was clinical success. Secondary end points were freedom from reintervention, sac growth, types I and III endoleak, migration, conversion to open repair, and AAA-related death or rupture. Neck dilatation, renal function, and overall survival were also analyzed. RESULTS: Included were 144 patients (88.2% men; mean age, 71.6 years). Aneurysms were ruptured in 4.9%. American Society of Anesthesiologists classification was III/IV in 61.8%. No patients were lost during a median follow-up of 5.0 years (interquartile range, 3.1-6.4; maximum, 11.2 years). Two patients died of medical complications ≤ 30 days after EVAR. The estimated primary clinical success rates at 5 and 10 years were 63.5% and 41.1%, and secondary clinical success rates were 78.3% and 58.3%, respectively. Sac growth was observed in 37 of 142 patients (26.1%). Cox regression showed type I endoleak during follow-up (hazard ratio, 3.74; P = .008), original design model (hazard ratio, 3.85; P = .001), and preoperative neck diameter (1.27 per mm increase, P = .006) were determinants of sac growth. Secondary interventions were required in 32 patients (22.5%). The estimated 10-year rate of AAA-related death or rupture was 2.1%. Overall life expectancy after AAA repair was 6.8 years. CONCLUSIONS: EVAR using the Excluder endoprosthesis provides a safe and lasting treatment for AAA, despite the need for maintained surveillance and secondary interventions. At up to 11 years, the risk of AAA-related death or postimplantation rupture is remarkably low. The incidences of postimplantation sac growth and secondary intervention were greatly reduced after the introduction of the low-permeability design in 2004.
Resumo:
OBJECTIVE: The objective of the study was to develop a model for estimating patient 28-day in-hospital mortality using 2 different statistical approaches. DESIGN: The study was designed to develop an outcome prediction model for 28-day in-hospital mortality using (a) logistic regression with random effects and (b) a multilevel Cox proportional hazards model. SETTING: The study involved 305 intensive care units (ICUs) from the basic Simplified Acute Physiology Score (SAPS) 3 cohort. PATIENTS AND PARTICIPANTS: Patients (n = 17138) were from the SAPS 3 database with follow-up data pertaining to the first 28 days in hospital after ICU admission. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: The database was divided randomly into 5 roughly equal-sized parts (at the ICU level). It was thus possible to run the model-building procedure 5 times, each time taking four fifths of the sample as a development set and the remaining fifth as the validation set. At 28 days after ICU admission, 19.98% of the patients were still in the hospital. Because of the different sampling space and outcome variables, both models presented a better fit in this sample than did the SAPS 3 admission score calibrated to vital status at hospital discharge, both on the general population and in major subgroups. CONCLUSIONS: Both statistical methods can be used to model the 28-day in-hospital mortality better than the SAPS 3 admission model. However, because the logistic regression approach is specifically designed to forecast 28-day mortality, and given the high uncertainty associated with the assumption of the proportionality of risks in the Cox model, the logistic regression approach proved to be superior.
Resumo:
OBJECTIVE:Endograft mural thrombus has been associated with stent graft or limb thrombosis after endovascular aneurysm repair (EVAR). This study aimed to identify clinical and morphologic determinants of endograft mural thrombus accumulation and its influence on thromboembolic events after EVAR. METHODS: A prospectively maintained database of patients treated by EVAR at a tertiary institution from 2000 to 2012 was analyzed. Patients treated for degenerative infrarenal abdominal aortic aneurysms and with available imaging for thrombus analysis were considered. All measurements were performed on three-dimensional center-lumen line computed tomography angiography (CTA) reconstructions. Patients with thrombus accumulation within the endograft's main body with a thickness >2 mm and an extension >25% of the main body's circumference were included in the study group and compared with a control group that included all remaining patients. Clinical and morphologic variables were assessed for association with significant thrombus accumulation within the endograft's main body by multivariate regression analysis. Estimates for freedom from thromboembolic events were obtained by Kaplan-Meier plots. RESULTS: Sixty-eight patients (16.4%) presented with endograft mural thrombus. Median follow-up time was 3.54 years (interquartile range, 1.99-5.47 years). In-graft mural thrombus was identified on 30-day CTA in 22 patients (32.4% of the study group), on 6-month CTA in 8 patients (11.8%), and on 1-year CTA in 17 patients (25%). Intraprosthetic thrombus progressively accumulated during the study period in 40 patients of the study group (55.8%). Overall, 17 patients (4.1%) presented with endograft or limb occlusions, 3 (4.4%) in the thrombus group and 14 (4.1%) in the control group (P = .89). Thirty-one patients (7.5%) received an aortouni-iliac (AUI) endograft. Two endograft occlusions were identified among AUI devices (6.5%; overall, 0.5%). None of these patients showed thrombotic deposits in the main body, nor were any outflow abnormalities identified on the immediately preceding CTA. Estimated freedom from thromboembolic events at 5 years was 95% in both groups (P = .97). Endograft thrombus accumulation was associated with >25% proximal aneurysm neck thrombus coverage at baseline (odds ratio [OR], 1.9; 95% confidence interval [CI], 1.1-3.3), neck length ≤ 15 mm (OR, 2.4; 95% CI, 1.3-4.2), proximal neck diameter ≥ 30 mm (OR, 2.4; 95% CI, 1.3-4.6), AUI (OR, 2.2; 95% CI, 1.8-5.5), or polyester-covered stent grafts (OR, 4.0; 95% CI, 2.2-7.3) and with main component "barrel-like" configuration (OR, 6.9; 95% CI, 1.7-28.3). CONCLUSIONS: Mural thrombus formation within the main body of the endograft is related to different endograft configurations, main body geometry, and device fabric but appears to have no association with the occurrence of thromboembolic events over time.
Resumo:
OBJECTIVE: The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. STUDY DESIGN: In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. RESULT: Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031-0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002-0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125-1.147; P=0.016) in female offspring were found. CONCLUSION: Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.