3 resultados para randomly amplified polymorphic DNA (RAPD)
Resumo:
INTRODUCTION: Invasive fungal infections (IFIs) are a life-threatening complication in patients with hematologic malignancies, mainly in acute leukemia patients, following chemotherapy. IFI incidence is increasing, and associated mortality remains high due to unreliable diagnosis. Antifungal drugs are often limited by inadequate antimicrobial spectrum and side effects. Thus, the detection of circulating fungal DNA has been advocated as a rapid, more sensitive diagnostic tool. PATIENTS AND METHODS: Between June 01 and January 03, weekly blood samples (1,311) were screened from 193 patients undergoing intensive myelosuppressive or immunosuppressive therapy. IFI cases were classified according to European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria. Fungal DNA was extracted from whole blood and amplified using polymerase chain reaction (PCR) published primers that bind to the conserved regions of the fungal 18S rRNA gene sequence. In our study, two or more consecutive positive samples were always associated with fungal disease. RESULTS: PCR screening predicted the development of IFI to be 17 days (median). This test had a specificity of 91.1% and a sensitivity of 75%. IFI incidence was 7.8%. DISCUSSION: Therefore, our results confirm the potential usefulness of PCR serial screening and the clinical applicability in everyday routine. PCR screening offers a noninvasive repeatable aid to the diagnosis of IFI.
Resumo:
OBJECTIVE: To determine the spectrum of MEN1 mutations in Portuguese kindreds, and identify mutation-carriers. PATIENTS, DESIGN AND RESULTS: Six unrelated MEN1 families were studied for MEN1 gene mutations by single-strand conformational polymorphism (SSCP) and DNA sequence analysis of the coding region and exon-intron boundaries of the MEN1 gene. These methods identified 4 different heterozygous mutations in four families: two mutations are novel (mt 1539 delG and mt 655 ims 11 bp) and two have been previously observed (mt 735 del 46p and mt 1656 del C) all resulting in a premature stop codon. In the remaining two families, in whom no mutations or abnormal MEN1 transcripts were detected, segregation studies of the 5' intragenic marker D11S4946 and codon 418 polymorphism in exon 9 revealed two large germline deletions of the MEN1 gene. Southern blot and tumour loss of heterozygosity analysis confirmed and refined the limits of these deletions, which spanned the MEN1 gene at least from: exon 7 to the 3' untranslated region, in one family, and the 5' polymorphic site D11S4946 to exon 9 (obliterating the initiation codon), in the other family. Twenty-six mutant-gene carriers were identified, 6 of which were asymptomatic. CONCLUSIONS: These results emphasize the importance of the detection of MEN1 germline deletions in patients who do not have mutations of the coding region. Important clues indicating the presence of such deletions may be obtained by segregation studies using the intragenic polymorphisms D11S4946 and at codon 418. The detection of these mutations will help in the genetic counselling of clinical management of the MEN1 families in Portugal.
Resumo:
Combined pituitary hormone deficiency (CPHD) has an incidence of approximately 1 in 8000 births. Although the proportion of familial CPHD cases is unknown, about 10% have an affected first degree relative. We have recently reported three mutations in the PROP1 gene that cause CPHD in human subjects. We report here the frequency of one of these mutations, a 301-302delAG deletion in exon 2 of PROP1, in 10 independently ascertained CPHD kindreds and 21 sporadic cases of CPHD from 8 different countries. Our results show that 55% (11 of 20) of PROP1 alleles have the 301-302delAG deletion in familial CPHD cases. Interestingly, although only 12% (5 of 42) of the PROP1 alleles of our 21 sporadic cases were 301-302delAG, the frequency of this allele (in 20 of 21 of the sporadic subjects given TRH stimulation tests) was 50% (3 of 6) and 0% (0 of 34) in the CPHD cases with pituitary and hypothalamic defects, respectively. Using whole genome radiation hybrid analysis, we localized the PROP1 gene to the distal end of chromosome 5q and identified a tightly linked polymorphic marker, D5S408, which can be used in segregation studies. Analysis of this marker in affected subjects with the 301-302delAG deletion suggests that rather than being inherited from a common founder, the 301-302delAG may be a recurring mutation.