4 resultados para phenotypic and molecular analysis
Resumo:
SLC26A2-related dysplasias encompass a spectrum of diseases: from lethal achondrogenesis type 1B (ACG1B; MIM #600972) and atelosteogenesis type 2 (AO2; MIM #256050) to classical diastrophic dysplasia (cDTD; MIM #222600) and recessive multiple epiphyseal dysplasia (rMED; MIM #226900). This study aimed at characterizing clinically, radiologically and molecularly 14 patients affected by non-lethal SLC26A2-related dysplasias and at evaluating genotype-phenotype correlation. Phenotypically, eight patients were classified as cDTD, four patients as rMED and two patients had an intermediate phenotype (mild DTD - mDTD, previously 'DTD variant'). The Arg279Trp mutation was present in all patients, either in homozygosity (resulting in rMED) or in compound heterozygosity with the known severe alleles Arg178Ter or Asn425Asp (resulting in DTD) or with the mutation c.727-1G>C (causing mDTD). The 'Finnish mutation', c.-26+2T>C, and the p.Cys653Ser, both frequent mutations in non-Portuguese populations, were not identified in any of the patients of our cohort and are probably very rare in the Portuguese population. A targeted mutation analysis for p.Arg279Trp and p.Arg178Ter in the Portuguese population allows the identification of approximately 90% of the pathogenic alleles.
Resumo:
Disease-causing alterations within the F8 gene were identified in 177 hemophilia A families of Portuguese origin. The spectrum of non-inversion F8 mutations in 101 families included 67 different alterations, namely: 36 missense, 8 nonsense and 4 splice site mutations, as well as 19 insertions/deletions. Thirty-four of these mutations are novel. Molecular modeling allowed prediction of the conformational changes introduced by selected amino acid substitutions and their correlation with the patients' phenotypes. The relatively frequent, population-specific, missense mutations together with de novo alterations can lead to significant differences in the spectrum of F8 mutations among different populations.
Resumo:
OBJECTIVE: Long-term follow-up after endovascular aneurysm repair (EVAR) is very scarce, and doubt remains regarding the durability of these procedures. We designed a retrospective cohort study to assess long-term clinical outcome and morphologic changes in patients with abdominal aortic aneurysms (AAAs) treated by EVAR using the Excluder endoprosthesis (W. L. Gore and Associates, Flagstaff, Ariz). METHODS: From 2000 to 2007, 179 patients underwent EVAR in a tertiary institution. Clinical data were retrieved from a prospective database. All patients treated with the Excluder endoprosthesis were included. Computed tomography angiography (CTA) scans were retrospectively analyzed preoperatively, at 30 days, and at the last follow-up using dedicated tridimensional reconstruction software. For patients with complications, all remaining CTAs were also analyzed. The primary end point was clinical success. Secondary end points were freedom from reintervention, sac growth, types I and III endoleak, migration, conversion to open repair, and AAA-related death or rupture. Neck dilatation, renal function, and overall survival were also analyzed. RESULTS: Included were 144 patients (88.2% men; mean age, 71.6 years). Aneurysms were ruptured in 4.9%. American Society of Anesthesiologists classification was III/IV in 61.8%. No patients were lost during a median follow-up of 5.0 years (interquartile range, 3.1-6.4; maximum, 11.2 years). Two patients died of medical complications ≤ 30 days after EVAR. The estimated primary clinical success rates at 5 and 10 years were 63.5% and 41.1%, and secondary clinical success rates were 78.3% and 58.3%, respectively. Sac growth was observed in 37 of 142 patients (26.1%). Cox regression showed type I endoleak during follow-up (hazard ratio, 3.74; P = .008), original design model (hazard ratio, 3.85; P = .001), and preoperative neck diameter (1.27 per mm increase, P = .006) were determinants of sac growth. Secondary interventions were required in 32 patients (22.5%). The estimated 10-year rate of AAA-related death or rupture was 2.1%. Overall life expectancy after AAA repair was 6.8 years. CONCLUSIONS: EVAR using the Excluder endoprosthesis provides a safe and lasting treatment for AAA, despite the need for maintained surveillance and secondary interventions. At up to 11 years, the risk of AAA-related death or postimplantation rupture is remarkably low. The incidences of postimplantation sac growth and secondary intervention were greatly reduced after the introduction of the low-permeability design in 2004.