4 resultados para peripheral vascular system
Resumo:
Transthyretin amyloidosis is a conformational pathology characterized by the extracellular formation of amyloid deposits and the progressive impairment of the peripheral nervous system. Point mutations in this tetrameric plasma protein decrease its stability and are linked to disease onset and progression. Since non-mutated transthyretin also forms amyloid in systemic senile amyloidosis and some mutation bearers are asymptomatic throughout their lives, non-genetic factors must also be involved in transthyretin amyloidosis. We discovered, using a differential proteomics approach, that extracellular chaperones such as fibrinogen, clusterin, haptoglobin, alpha-1-anti-trypsin and 2-macroglobulin are overrepresented in transthyretin amyloidosis. Our data shows that a complex network of extracellular chaperones are over represented in human plasma and we speculate that they act synergistically to cope with amyloid prone proteins. Proteostasis may thus be as important as point mutations in transthyretin amyloidosis.
Resumo:
There is a body of evidence that supports the important role of the renin-angiotensin system (RAS) in atherosclerotic disease and in the cardiovascular disease continuum: from endothelial dysfunction to vascular occlusion. In the earlier stages of vascular disease, the RAS promotes functional changes, of which endothelial dysfunction is the best example. The deposition of atherogenic lipoproteins in the intima, their oxidative modification and the onset and amplification of the inflammatory response strengthens the atherogenic role of the RAS. Inflammatory cells are one of the main sources of angiotensin-converting enzyme (ACE) and angiotensin II (Ang II) in the vascular wall, in a process that leads to structural changes in the artery and progression of atherosclerotic disease. Ang II promotes the migration of vascular smooth muscle cells and their phenotypic differentiation in synthesis that accelerates vascular disease. By modulating the inflammatory response and, in general, all the elements of the plaque, Ang II plays a part in its instability, in the onset of acute events and in the promotion of the local prothrombotic state that leads to infarction.
Resumo:
Introduction: The rat is probably the animal species most widely used in experimental studies on nerve repair. The aim of this work was to contribute to a better understanding of the morphology and blood supply of the rat brachial plexus. Material and Methods: Thirty adult rats were studied regarding brachial plexus morphology and blood supply. Intravascular injection and dissection under an operating microscope, as well as light microscopy and scanning electron microscopy techniques were used to define the microanatomy of the rat brachial plexus and its vessels. Results: The rat brachial plexus was slightly different from the human brachial plexus. The arterial and venous supply to the brachial plexus plexus was derived directly or indirectly from neighboring vessels. These vessels formed dense and interconnected plexuses in the epineurium, perineurium, and endoneurium. Several brachial plexus components were accompanied for a relatively long portion of their length by large and constant blood vessels that supplied their epineural plexus, making it possible to raise these nerves as flaps. Discussion: The blood supply to the rat brachial plexus is not very different from that reported in humans, making the rat a useful animal model for the experimental study of peripheral nerve pathophysiology and treatment. Conclusion: Our results support the homology between the rat and the human brachial plexus in terms of morphology and blood supply. This work suggests that several components of the rat brachial plexus can be used as nerve flaps, including predominantly motor, sensory or mixed nerve fibers. This information may facilitate new experimental procedures in this animal model.