4 resultados para model validation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION: The index of microcirculatory resistance (IMR) enables/provides quantitative, invasive, and real-time assessment of coronary microcirculation status. AIMS: The primary aim of this study was to validate the assessment of IMR in a large animal model, and the secondary aim was to compare two doses of intracoronary papaverine, 5 and 10 mg, for induction of maximal hyperemia and its evolution over time. METHODS: Measurements of IMR were performed in eight pigs. Mean distal pressure (Pd) and mean transit time (Tmn) were measured at rest and at maximal hyperemia induced with intracoronary papaverine, 5 and 10 mg, and after 2, 5, 8 and 10 minutes. Disruption of the microcirculation was achieved by selective injection of 40-μm microspheres via a microcatheter in the left anterior descending artery. RESULTS: In each animal 14 IMR measurements were made. There were no differences between the two doses of papaverine regarding Pd response and IMR values - 11 ± 4.5 U with 5 mg and 10.6 ± 3 U with 10 mg (p=0.612). The evolution of IMR over time was also similar with the two doses, with significant differences from resting values disappearing after five minutes of intracoronary papaverine administration. IMR increased with disrupted microcirculation in all animals (41 ± 16 U, p=0.001). CONCLUSIONS: IMR provides invasive and real-time assessment of coronary microcirculation. Disruption of the microvascular bed is associated with a significant increase in IMR. A 5-mg dose of intracoronary papaverine is as effective as a 10-mg dose in inducing maximal hyperemia. After five minutes of papaverine administration there is no significant difference from resting hemodynamic status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The objective of the study was to develop a model for estimating patient 28-day in-hospital mortality using 2 different statistical approaches. DESIGN: The study was designed to develop an outcome prediction model for 28-day in-hospital mortality using (a) logistic regression with random effects and (b) a multilevel Cox proportional hazards model. SETTING: The study involved 305 intensive care units (ICUs) from the basic Simplified Acute Physiology Score (SAPS) 3 cohort. PATIENTS AND PARTICIPANTS: Patients (n = 17138) were from the SAPS 3 database with follow-up data pertaining to the first 28 days in hospital after ICU admission. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: The database was divided randomly into 5 roughly equal-sized parts (at the ICU level). It was thus possible to run the model-building procedure 5 times, each time taking four fifths of the sample as a development set and the remaining fifth as the validation set. At 28 days after ICU admission, 19.98% of the patients were still in the hospital. Because of the different sampling space and outcome variables, both models presented a better fit in this sample than did the SAPS 3 admission score calibrated to vital status at hospital discharge, both on the general population and in major subgroups. CONCLUSIONS: Both statistical methods can be used to model the 28-day in-hospital mortality better than the SAPS 3 admission model. However, because the logistic regression approach is specifically designed to forecast 28-day mortality, and given the high uncertainty associated with the assumption of the proportionality of risks in the Cox model, the logistic regression approach proved to be superior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Insulin resistance is the pathophysiological key to explain metabolic syndrome. Although clearly useful, the Homeostasis Model Assessment index (an insulin resistance measurement) hasn't been systematically applied in clinical practice. One of the main reasons is the discrepancy in cut-off values reported in different populations. We sought to evaluate in a Portuguese population the ideal cut-off for Homeostasis Model Assessment index and assess its relationship with metabolic syndrome. MATERIAL AND METHODS: We selected a cohort of individuals admitted electively in a Cardiology ward with a BMI < 25 Kg/m2 and no abnormalities in glucose metabolism (fasting plasma glucose < 100 mg/dL and no diabetes). The 90th percentile of the Homeostasis Model Assessment index distribution was used to obtain the ideal cut-off for insulin resistance. We also selected a validation cohort of 300 individuals (no exclusion criteria applied). RESULTS: From 7 000 individuals, and after the exclusion criteria, there were left 1 784 individuals. The 90th percentile for Homeostasis Model Assessment index was 2.33. In the validation cohort, applying that cut-off, we have 49.3% of individuals with insulin resistance. However, only 69.9% of the metabolic syndrome patients had insulin resistance according to that cut-off. By ROC curve analysis, the ideal cut-off for metabolic syndrome is 2.41. Homeostasis Model Assessment index correlated with BMI (r = 0.371, p < 0.001) and is an independent predictor of the presence of metabolic syndrome (OR 19.4, 95% CI 6.6 - 57.2, p < 0.001). DISCUSSION: Our study showed that in a Portuguese population of patients admitted electively in a Cardiology ward, 2.33 is the Homeostasis Model Assessment index cut-off for insulin resistance and 2.41 for metabolic syndrome. CONCLUSION: Homeostasis Model Assessment index is directly correlated with BMI and is an independent predictor of metabolic syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: New scores have been developed and validated in the US for in-hospital mortality risk stratification in patients undergoing coronary angioplasty: the National Cardiovascular Data Registry (NCDR) risk score and the Mayo Clinic Risk Score (MCRS). We sought to validate these scores in a European population with acute coronary syndrome (ACS) and to compare their predictive accuracy with that of the GRACE risk score. METHODS: In a single-center ACS registry of patients undergoing coronary angioplasty, we used the area under the receiver operating characteristic curve (AUC), a graphical representation of observed vs. expected mortality, and net reclassification improvement (NRI)/integrated discrimination improvement (IDI) analysis to compare the scores. RESULTS: A total of 2148 consecutive patients were included, mean age 63 years (SD 13), 74% male and 71% with ST-segment elevation ACS. In-hospital mortality was 4.5%. The GRACE score showed the best AUC (0.94, 95% CI 0.91-0.96) compared with NCDR (0.87, 95% CI 0.83-0.91, p=0.0003) and MCRS (0.85, 95% CI 0.81-0.90, p=0.0003). In model calibration analysis, GRACE showed the best predictive power. With GRACE, patients were more often correctly classified than with MCRS (NRI 78.7, 95% CI 59.6-97.7; IDI 0.136, 95% CI 0.073-0.199) or NCDR (NRI 79.2, 95% CI 60.2-98.2; IDI 0.148, 95% CI 0.087-0.209). CONCLUSION: The NCDR and Mayo Clinic risk scores are useful for risk stratification of in-hospital mortality in a European population of patients with ACS undergoing coronary angioplasty. However, the GRACE score is still to be preferred.