2 resultados para layer-by-layer synthetic method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To compare measurements of the upper arm cross-sectional areas (total arm area,arm muscle area, and arm fat area of healthy neonates) as calculated using anthropometry with the values obtained by ultrasonography. Materials and methods: This study was performed on 60 consecutively born healthy neonates: gestational age (mean6SD) 39.661.2 weeks, birth weight 3287.16307.7 g, 27 males (45%) and 33 females (55%). Mid-arm circumference and tricipital skinfold thickness measurements were taken on the left upper mid-arm according to the conventional anthropometric method to calculate total arm area, arm muscle area and arm fat area. The ultrasound evaluation was performed at the same arm location using a Toshiba sonolayer SSA-250AÒ, which allows the calculation of the total arm area, arm muscle area and arm fat area by the number of pixels enclosed in the plotted areas. Statistical analysis: whenever appropriate, parametric and non-parametric tests were used in order to compare measurements of paired samples and of groups of samples. Results: No significant differences between males and females were found in any evaluated measurements, estimated either by anthropometry or by ultrasound. Also the median of total arm area did not differ significantly with either method (P50.337). Although there is evidence of concordance of the total arm area measurements (r50.68, 95% CI: 0.55–0.77) the two methods of measurement differed for arm muscle area and arm fat area. The estimated median of measurements by ultrasound for arm muscle area were significantly lower than those estimated by the anthropometric method, which differed by as much as 111% (P,0.001). The estimated median ultrasound measurement of the arm fat was higher than the anthropometric arm fat area by as much as 31% (P,0.001). Conclusion: Compared with ultrasound measurements using skinfold measurements and mid-arm circumference without further correction may lead to overestimation of the cross-sectional area of muscle and underestimation of the cross-sectional fat area. The correlation between the two methods could be interpreted as an indication for further search of correction factors in the equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether the slope of a maximal bronchial challenge test (in which FEV1 falls by over 50%) could be extrapolated from a standard bronchial challenge test (in which FEV1 falls up to 20%), 14 asthmatic children performed a single maximal bronchial challenge test with methacholin(dose range: 0.097–30.08 umol) by the dosimeter method. Maximal dose-response curves were included according to the following criteria: (1) at least one more dose beyond a FEV1 ù 20%; and (2) a MFEV1 ù 50%. PD20 FEV1 was calculated, and the slopes of the early part of the dose-response curve (standard dose-response slopes) and of the entire curve (maximal dose-response slopes) were calculated by two methods: the two-point slope (DRR) and the least squares method (LSS) in % FEV1 × umol−1. Maximal dose-response slopes were compared with the corresponding standard dose-response slopes by a paired Student’s t test after logarithmic transformation of the data; the goodness of fit of the LSS was also determined. Maximal dose-response slopes were significantly different (p < 0.0001) from those calculated on the early part of the curve: DRR20% (91.2 ± 2.7 FEV1% z umol−1)was 2.88 times higher than DRR50% (31.6 ± 3.4 DFEV1% z umol−1), and the LSS20% (89.1 ± 2.8% FEV1 z umol−1) was 3.10 times higher than LSS 50% (28.8 ± 1.5%FEV1 z umol−1). The goodness of fit of LSS 50% was significant in all cases, whereas LSS 20% failed to be significant in one. These results suggest that maximal dose-response slopes cannot be predicted from the data of standard bronchial challenge tests.