3 resultados para interferon production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interferon-beta (IFN-beta) therapy for multiple sclerosis (MS) is associated with a potential for induction of neutralizing antibodies (NAbs). Because immune reactivity depends on changes in lipoprotein metabolism, we investigated whether plasma lipoprotein profiles could be associated with the development of NAbs. Thirty-one female MS patients treated with subcutaneously administered IFN-beta were included. Demographic and clinical characteristics were compared between NAbs response groups using t tests for continuous and logistic regression analysis and Fisher's exact tests for categorical data, respectively. Multivariate logistic regression was used to evaluate the effect of potential confounders. Patients who developed NAbs had lower apoE levels before treatment, 67 (47-74) mg/L median (interquartile range), and at the moment of NAb analysis, 53 (50-84) mg/L, in comparison to those who remained NAb-negative, 83 (68-107) mg/L, P = 0.03, and 76 (66-87) mg/L, P = 0.04, respectively. When adjusting for age and smoking for a one-standard deviation decrease in apoE levels, a 5.6-fold increase in the odds of becoming NAb-positive was detected: odds ratios (OR) 0.18 (95% CI 0.04-0.77), P = 0.04. When adjusting for apoE, smoking habit became associated with NAb induction: OR 5.6 (95% CI 1.3-87), P = 0.03. These results suggest that apoE-containing lipoprotein metabolism and, possibly, tobacco smoking may be associated with risk of NAb production in female MS patients treated with IFN-beta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allelic differences in gene promoter or codifying regions have been described to affect regulation of gene expression, consequently increasing or decreasing cytokine production and signal transduction responses to a given stimulus. This observation has been reported for interleukin (IL)-10 (-1082 A/G; -819/-592 CT/CA), transforming growth factor (TGF)-beta (codon 10 C/T, codon 25 G/C), tumor necrosis factor (TNF)-alpha (-308 G/A), TNF-beta (+252 A/G), interferon (IFN)-gamma (+874 T/A), IL-6 (-174 G/C), and IL-4R alpha (+1902 G/A). To evaluate the influence of these cytokine genotypes on the development of acute or chronic rejection, we correlated the genotypes of both kidney graft recipients and cadaver donors with the clinical outcome. Kidney recipients had 5 years follow-up, at least 2 HLA-DRB compatibilities, and a maximum of 25% anti-HLA pretransplantation sensitization. The clinical outcomes were grouped as follows: stable functioning graft (NR, n = 35); acute rejection episodes (AR, n = 31); and chronic rejection (CR, n = 31). The cytokine genotype polymorphisms were defined using PCR-SSP typing. A statistical analysis showed a significant prevalence of recipient IL-10 -819/-592 genotype among CR individuals; whereas among donors, the TGF-beta codon 10 CT genotype was significantly associated with the AR cohort and the IL-6 -174 CC genotype with CR. Other albeit not significant observations included a strong predisposition of recipient TGF-beta codon 10 CT genotype with CR, and TNF-beta 252 AA with AR. A low frequency of TNF-alpha -308 AA genotype also was observed among recipients and donors who showed poor allograft outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type I interferon system is integral to human antiviral immunity. However, inappropriate stimulation or defective negative regulation of this system can lead to inflammatory disease. We sought to determine the molecular basis of genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome, and of other patients with undefined neurological and immunological phenotypes also demonstrating an upregulated type I interferon response. We found that heterozygous mutations in the cytosolic double-stranded RNA receptor gene IFIH1 (MDA5) cause a spectrum of neuro-immunological features consistently associated with an enhanced interferon state. Cellular and biochemical assays indicate that these mutations confer a gain-of-function - so that mutant IFIH1 binds RNA more avidly, leading to increased baseline and ligand-induced interferon signaling. Our results demonstrate that aberrant sensing of nucleic acids can cause immune upregulation.