5 resultados para infinite dimensional differential geometry
Resumo:
OBJECTIVES: To assess the feasibility of performing pulmonary angiography using MRI with contrast enhancement in patients with pulmonary vascular disease. METHODS: We present our experience in ten individuals, two controls and eight patients who underwent the exam after injection of a gadolinium-based contrast agent on a 1 Tesla MR scanner using a time-of-flight sequence and breath-holding during injection of contrast. RESULTS: Pathology in the main pulmonary artery and its major branches was detected easily while resolution at the segmental and subsegmental levels was inadequate. CONCLUSION: Contrast-enhanced magnetic resonance pulmonary angiography is feasible on a 1 Tesla MR scanner for the study of pathology of the main pulmonary artery and its major branches, like massive pulmonary embolism. However its ability to detect and define distal vessel pathology as found in chronic thromboembolic pulmonary hypertension and small pulmonary emboli is limited.
Resumo:
Although a variety of nanoparticles (NPs) functionalized with amphotericin B, an antifungal agent widely used in the clinic, have been studied in the last years their cytotoxicity profile remains elusive. Here we show that human endothelial cells take up high amounts of silica nanoparticles (SNPs) conjugated with amphotericin B (AmB) (SNP-AmB) (65.4 12.4 pg of Si per cell) through macropinocytosis while human fibroblasts internalize relatively low amounts (2.3 0.4 pg of Si per cell) because of their low capacity for macropinocytosis. We further show that concentrations of SNP-AmB and SNP up to 400 mg/mL do not substantially affect fibroblasts. In contrast, endothelial cells are sensitive to low concentrations of NPs (above 10 mg/mL), in particular to SNP-AmB. This is because of their capacity to internalize high concentration of NPs and high sensitivity of their membrane to the effects of AmB. Low-moderate concentrations of SNP-AmB (up to 100 mg/mL) induce the production of reactive oxygen species (ROS), LDH release, high expression of pro-inflammatory cytokines and chemokines (IL-8, IL-6, G-CSF, CCL4, IL-1b and CSF2) and high expression of heat shock proteins (HSPs) at gene and protein levels. High concentrations of SNP-AmB (above 100 ug/mL) disturb membrane integrity and kill rapidly human cells(60% after 5 h). This effect is higher in SNP-AmB than in SNP.
Resumo:
Transthyretin amyloidosis is a conformational pathology characterized by the extracellular formation of amyloid deposits and the progressive impairment of the peripheral nervous system. Point mutations in this tetrameric plasma protein decrease its stability and are linked to disease onset and progression. Since non-mutated transthyretin also forms amyloid in systemic senile amyloidosis and some mutation bearers are asymptomatic throughout their lives, non-genetic factors must also be involved in transthyretin amyloidosis. We discovered, using a differential proteomics approach, that extracellular chaperones such as fibrinogen, clusterin, haptoglobin, alpha-1-anti-trypsin and 2-macroglobulin are overrepresented in transthyretin amyloidosis. Our data shows that a complex network of extracellular chaperones are over represented in human plasma and we speculate that they act synergistically to cope with amyloid prone proteins. Proteostasis may thus be as important as point mutations in transthyretin amyloidosis.
Resumo:
OBJECTIVE:Endograft mural thrombus has been associated with stent graft or limb thrombosis after endovascular aneurysm repair (EVAR). This study aimed to identify clinical and morphologic determinants of endograft mural thrombus accumulation and its influence on thromboembolic events after EVAR. METHODS: A prospectively maintained database of patients treated by EVAR at a tertiary institution from 2000 to 2012 was analyzed. Patients treated for degenerative infrarenal abdominal aortic aneurysms and with available imaging for thrombus analysis were considered. All measurements were performed on three-dimensional center-lumen line computed tomography angiography (CTA) reconstructions. Patients with thrombus accumulation within the endograft's main body with a thickness >2 mm and an extension >25% of the main body's circumference were included in the study group and compared with a control group that included all remaining patients. Clinical and morphologic variables were assessed for association with significant thrombus accumulation within the endograft's main body by multivariate regression analysis. Estimates for freedom from thromboembolic events were obtained by Kaplan-Meier plots. RESULTS: Sixty-eight patients (16.4%) presented with endograft mural thrombus. Median follow-up time was 3.54 years (interquartile range, 1.99-5.47 years). In-graft mural thrombus was identified on 30-day CTA in 22 patients (32.4% of the study group), on 6-month CTA in 8 patients (11.8%), and on 1-year CTA in 17 patients (25%). Intraprosthetic thrombus progressively accumulated during the study period in 40 patients of the study group (55.8%). Overall, 17 patients (4.1%) presented with endograft or limb occlusions, 3 (4.4%) in the thrombus group and 14 (4.1%) in the control group (P = .89). Thirty-one patients (7.5%) received an aortouni-iliac (AUI) endograft. Two endograft occlusions were identified among AUI devices (6.5%; overall, 0.5%). None of these patients showed thrombotic deposits in the main body, nor were any outflow abnormalities identified on the immediately preceding CTA. Estimated freedom from thromboembolic events at 5 years was 95% in both groups (P = .97). Endograft thrombus accumulation was associated with >25% proximal aneurysm neck thrombus coverage at baseline (odds ratio [OR], 1.9; 95% confidence interval [CI], 1.1-3.3), neck length ≤ 15 mm (OR, 2.4; 95% CI, 1.3-4.2), proximal neck diameter ≥ 30 mm (OR, 2.4; 95% CI, 1.3-4.6), AUI (OR, 2.2; 95% CI, 1.8-5.5), or polyester-covered stent grafts (OR, 4.0; 95% CI, 2.2-7.3) and with main component "barrel-like" configuration (OR, 6.9; 95% CI, 1.7-28.3). CONCLUSIONS: Mural thrombus formation within the main body of the endograft is related to different endograft configurations, main body geometry, and device fabric but appears to have no association with the occurrence of thromboembolic events over time.