3 resultados para finite integral transform technique
Resumo:
The classical “Roux en Y Gastric Bypass” (RYGBP) is still the standard technique between all the ones being used nowadays. The “One anastomosis gastric bypass” (OAGBP), is an evolution of the “Minigastic bypass” described by Robert Rutledge in 2001, is a well known and progressively frequent but still controversial technique. In our group, after an experience of 10 years using the RYGBP as a salvage surgery after failed gastric banding, in 132 cases, we decided to adopt the OAGBP as our preferential bariatric technique also in this situation. The theoretical main reasons for that shift are related to the increased safety, maximized weight loss, long term weight loss maintenance and reversibility of the operation. Method: Retrospectively we evaluated data of the surgical management of revisional cases for conversion, after failed or complicated gastric bands to gastric bypass. We selected the last 40 cases of each technique since May 2010. Results: All cases were performed by laparoscopy without any conversion. In both groups the conversion has been performed in one single step (17 cases, 42,5%). Data showed lower morbidity with OAGBP (2,5% against 7,5%) and better weight loss in theOAGBP cohort after a median follow up of 16months (67%against 55%) in patients revised after gastric band failure or complications. None had statistic significance (p>0,1) by the chi-square contingency table analysis.Conclusion: It seems to there is a difference in favour of OAGBP for conversion of complicated gastric bands. In this study we didn’t found statistic significance probably because of the short numbers. Prospective and more powerful studies are necessary to evaluate the benefit of the studied procedure.
Resumo:
BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.
Resumo:
Flexor hallucis longus (FHL) transfer is a well-established treatment option in failed Achilles tendon (AT) repair and has been routinely performed as an open procedure. We detail the surgical steps needed to perform an arthroscopic transfer of the FHL for a chronic AT rupture. The FHL tendon is harvested as it enters in its tunnel beneath the sustentaculum tali; a tunnel is then drilled in the calcaneus as near to the AT footprint as possible. By use of a suture-passing device, the free end of the FHL is advanced to the plantar aspect of the foot. After adequate tension is applied to the construct, the tendon is fixed in place with an interference screw in an inside-out fashion. This minimally invasive approach is a safe and valid alternative to classic open procedures with the obvious advantages of preserving the soft-tissue envelope and using a biologically intact tendon.