2 resultados para building information model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Indoor air quality (IAQ) is considered an important determinant of human health. The association between exposure to volatile organic compounds, particulate matter, house dust mite, molds and bacteria in day care centers (DCC) is not completely clear. The aim of this project was to study these effects. Methods --- study design: This study comprised two phases. Phase I included an evaluation of 45 DCCs (25 from Lisbon and 20 from Oporto, targeting 5161 children). In this phase, building characteristics, indoor CO2 and air temperature/relative humidity, were assessed. A children’s respiratory health questionnaire derived from the ISAAC (International Study on Asthma and Allergies in Children) was also distributed. Phase II encompassed two evaluations and included 20 DCCs selected from phase I after a cluster analysis (11 from Lisbon and 9 from Oporto, targeting 2287 children). In this phase, data on ventilation, IAQ, thermal comfort parameters, respiratory and allergic health, airway inflammation biomarkers, respiratory virus infection patterns and parental and child stress were collected. Results: In Phase I, building characteristics, occupant behavior and ventilation surrogates were collected from all DCCs. The response rate of the questionnaire was 61.7% (3186 children). Phase II included 1221 children. Association results between DCC characteristics, IAQ and health outcomes will be provided in order to support recommendations on IAQ and children’s health. A building ventilation model will also be developed. Discussion: This paper outlines methods that might be implemented by other investigators conducting studies on the association between respiratory health and indoor air quality at DCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The objective of the study was to develop a model for estimating patient 28-day in-hospital mortality using 2 different statistical approaches. DESIGN: The study was designed to develop an outcome prediction model for 28-day in-hospital mortality using (a) logistic regression with random effects and (b) a multilevel Cox proportional hazards model. SETTING: The study involved 305 intensive care units (ICUs) from the basic Simplified Acute Physiology Score (SAPS) 3 cohort. PATIENTS AND PARTICIPANTS: Patients (n = 17138) were from the SAPS 3 database with follow-up data pertaining to the first 28 days in hospital after ICU admission. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: The database was divided randomly into 5 roughly equal-sized parts (at the ICU level). It was thus possible to run the model-building procedure 5 times, each time taking four fifths of the sample as a development set and the remaining fifth as the validation set. At 28 days after ICU admission, 19.98% of the patients were still in the hospital. Because of the different sampling space and outcome variables, both models presented a better fit in this sample than did the SAPS 3 admission score calibrated to vital status at hospital discharge, both on the general population and in major subgroups. CONCLUSIONS: Both statistical methods can be used to model the 28-day in-hospital mortality better than the SAPS 3 admission model. However, because the logistic regression approach is specifically designed to forecast 28-day mortality, and given the high uncertainty associated with the assumption of the proportionality of risks in the Cox model, the logistic regression approach proved to be superior.