4 resultados para arm-trunk coordination
Resumo:
Objective: To compare measurements of the upper arm cross-sectional areas (total arm area,arm muscle area, and arm fat area of healthy neonates) as calculated using anthropometry with the values obtained by ultrasonography. Materials and methods: This study was performed on 60 consecutively born healthy neonates: gestational age (mean6SD) 39.661.2 weeks, birth weight 3287.16307.7 g, 27 males (45%) and 33 females (55%). Mid-arm circumference and tricipital skinfold thickness measurements were taken on the left upper mid-arm according to the conventional anthropometric method to calculate total arm area, arm muscle area and arm fat area. The ultrasound evaluation was performed at the same arm location using a Toshiba sonolayer SSA-250AÒ, which allows the calculation of the total arm area, arm muscle area and arm fat area by the number of pixels enclosed in the plotted areas. Statistical analysis: whenever appropriate, parametric and non-parametric tests were used in order to compare measurements of paired samples and of groups of samples. Results: No significant differences between males and females were found in any evaluated measurements, estimated either by anthropometry or by ultrasound. Also the median of total arm area did not differ significantly with either method (P50.337). Although there is evidence of concordance of the total arm area measurements (r50.68, 95% CI: 0.55–0.77) the two methods of measurement differed for arm muscle area and arm fat area. The estimated median of measurements by ultrasound for arm muscle area were significantly lower than those estimated by the anthropometric method, which differed by as much as 111% (P,0.001). The estimated median ultrasound measurement of the arm fat was higher than the anthropometric arm fat area by as much as 31% (P,0.001). Conclusion: Compared with ultrasound measurements using skinfold measurements and mid-arm circumference without further correction may lead to overestimation of the cross-sectional area of muscle and underestimation of the cross-sectional fat area. The correlation between the two methods could be interpreted as an indication for further search of correction factors in the equations.
Resumo:
Background: Upper arm anthropometry has been used in the nutritional assessment of small infants, but it has not yet been validated as a predictor of regional body composition in this population. Objective: Validation of measured and derived upper arm anthropometry as a predictor of arm fat and fat-free compartments in preterm infants. Methods: Upper arm anthropometry, including the upper arm cross-sectional areas, was compared individually or in combination with other anthropometric measurements, with the cross-sectional arm areas measured by magnetic resonance imaging, in a cohort of consecutive preterm appropriate-for-gestationalage neonates, just before discharge. Results: Thirty infants born with (mean 8 SD) a gestational age of 30.7 8 1.9 weeks and birth weight of 1,380 8 325 g, were assessed at 35.4 8 1.1 weeks of corrected gestational age, weighing 1,785 8 93 g. None of the anthropometric measurements are reliable predictors (r 2 ! 0.56) of the measurements obtained by magnetic resonance imaging, individually or in combination with other anthropometric measurements. Conclusion: Both measured anthropometry and derived upper arm anthropometry are inaccurate predictors of regional body composition in preterm appropriate-for-gestational-age infants.
Resumo:
INTRODUCTION: Excision of large dermatofibrosarcoma protuberans in the anterior aspect of the trunk often results in large surgical defects that frequently dictate the need for microsurgical reconstruction. However, this option is not always available. PRESENTATION OF CASE: The authors describe two patients with very large anterior trunk dermatofibrosarcoma protuberans: one in the epigastric region and the other in the hypogastric region. In the patient with the hypogastric tumor, a classical abdominoplasty flap associated with umbilical transposition was used to cover the skin defect after muscle and fascial plication, and placement of a polypropylene mesh. In the patient with the epigastric tumor, a synthetic mesh was also placed, and the skin and subcutaneous defect was reconstructed with a reverse abdominoplasty flap and two thoraco-epigastric flaps. In both cases, complete closure was possible without immediate or late complications. DISCUSSION: The local options described in this paper present several potential advantages compared to microsurgical reconstruction, namely they are easier and faster to perform and teach; they provide a good skin color and texture match; they are not associated with distant donor site morbidity; follow-up is usually less cumbersome; the post-operative hospital stay tends to be shorter; they are less costly; they are less prone to complete failure. CONCLUSION: The authors believe that these two patients clearly show that local flaps, although frequently neglected, continue to be valid options for reconstructing large anterior trunk defects, even in the current era of microsurgery enthusiasm.
Resumo:
The hypoglossal nerve is a pure motor nerve. It provides motor control to the intrinsic and extrinsic tongue muscles thus being essential for normal tongue movement and coordination. In order to design a useful imaging approach and a working differential diagnosis in cases of hypoglossal nerve damage one has to have a good knowledge of the normal anatomy of the nerve trunk and its main branches. A successful imaging evaluation to hypoglossal diseases always requires high resolution studies due to the small size of the structures being studied. MRI is the preferred modality to directly visualize the nerve, while CT is superior in displaying the bony anatomy of the neurovascular foramina of the skull base. Also, while CT is only able to detect nerve pathology by indirect signs, such as bony expansion of the hypoglossal canal, MRI is able to visualize directly the causative pathological process as in the case of small tumors, or infectious/inflammatory processes affecting the nerve. The easiest way to approach the study of the hypoglossal nerve is to divide it in its main segments: intra-axial, cisternal, skull base and extracranial segment, tailoring the imaging technique to each anatomical area while bearing in mind the main disease entities affecting each segment.