5 resultados para Weighted Averaging
Resumo:
de imagem em RM, caracterizada pela sua alta resolução espacial e grande sensibilidade a diferenças de susceptibilidade magnética dos tecidos, acentuando as propriedades paramagnéticas de produtos como a desoxihemoglobina, hemossiderina, ferro e cálcio e sendo particularmente útil na avaliação das estruturas venosas. Objectivos: O objectivo deste trabalho é fazer uma breve revisão das aplicações clínicas da sequência SWI em neuropediatria e demonstrar a sua grande utilidade, nomeadamente em comparação as a sequência T2*. Material e Métodos: Os exames foram realizados a crianças com idades compreendidas entre o período neonatal e os 16 anos, internadas ou seguidas em consulta no Hospital Pediátrico D. Estefânia; as imagens SWI foram efectuadas em equipamento Siemens 1.5 T, Avanto, com os seguintes parâmetros: TR 49, TE 40, flip angle 15, espessura 1,6mm. Resultados: Apresentamos vários casos ilustrativos de patologias em que o SWI demonstra a sua utilidade e mais-valia, nomeadamente na detecção de lesões hemorrágicas recentes ou antigas em diferentes contextos particulares em neuropediatria (patologia hipoxico-isquémica, vascular, trauma não acidental), detecção de cavernomas e anomalias venosas de desenvolvimento, avaliação de tumores e doenças neurodegenerativas. Conclusão: A sequência SWI é bastante útil na avaliação imagiológica de várias patologias e variantes venosas em neuropediatria, fornecendo uma informação adicional com implicações diagnósticas e prognósticas comparativamente com o T2*, obviando também a administração de contraste para avaliação de estruturas venosas.
Resumo:
Objective: The epilepsy associated with the hypothalamic hamartomas constitutes a syndrome with peculiar seizures, usually refractory to medical therapy, mild cognitive delay, behavioural problems and multifocal spike activity in the scalp electroencephalogram (EEG). The cortical origin of spikes has been widely assumed but not specifically demonstrated. Methods: We present results of a source analysis of interictal spikes from 4 patients (age 2–25 years) with epilepsy and hypothalamic hamartoma, using EEG scalp recordings (32 electrodes) and realistic boundary element models constructed from volumetric magnetic resonance imaging (MRIs). Multifocal spike activity was the most common finding, distributed mainly over the frontal and temporal lobes. A spike classification based on scalp topography was done and averaging within each class performed to improve the signal to noise ratio. Single moving dipole models were used, as well as the Rap-MUSIC algorithm. Results: All spikes with good signal to noise ratio were best explained by initial deep sources in the neighbourhood of the hamartoma, with late sources located in the cortex. Not a single patient could have his spike activity explained by a combination of cortical sources. Conclusions: Overall, the results demonstrate a consistent origin of spike activity in the subcortical region in the neighbourhood of the hamartoma, with late spread to cortical areas.
Optimization of fMRI Processing Parameters for Simutaneous Acquisition of EEG/fMRI in Focal Epilepsy
Resumo:
In the context of focal epilepsy, the simultaneous combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) holds a great promise as a technique by which the hemodynamic correlates of interictal spikes detected on scalp EEG can be identified. The fact that traditional EEG recordings have not been able to overcome the difficulty in correlating the ictal clinical symptoms to the onset in particular areas of the lobes, brings the need of mapping with more precision the epileptogenic cortical regions. On the other hand, fMRI suggested localizations more consistent with the ictal clinical manifestations detected. This study was developed in order to improve the knowledge about the way parameters involved in the physical and mathematical data, produced by the EEG/fMRI technique processing, would influence the final results. The evaluation of the accuracy was made by comparing the BOLD results with: the high resolution EEG maps; the malformative lesions detected in the T1 weighted MR images; and the anatomical localizations of the diagnosed symptomatology of each studied patient. The optimization of the set of parameters used, will provide an important contribution to the diagnosis of epileptogenic focuses, in patients included on an epilepsy surgery evaluation program. The results obtained allowed us to conclude that: by associating the BOLD effect with interictal spikes, the epileptogenic areas are mapped to localizations different from those obtained by the EEG maps representing the electrical potential distribution across the scalp (EEG); there is an important and solid bond between the variation of particular parameters (manipulated during the fMRI data processing) and the optimization of the final results, from which smoothing, deleted volumes, HRF (used to convolve with the activation design), and the shape of the Gamma function can be certainly emphasized.
Resumo:
Multiparametric Magnetic Resonance Imaging has been increasingly used for detection, localization and staging of prostate cancer over the last years. It combines high-resolution T2 Weighted-Imaging and at least two functional techniques, which include Dynamic Contrast–Enhanced Magnetic Resonance Imaging, Diffusion-Weighted Imaging, and Magnetic Resonance Imaging Spectroscopy. Although the combined use of a pelvic phased-array and an Endorectal Coil is considered the state-of-the-art for Magnetic Resonance Imaging evaluation of prostate cancer, Endorectal Coil is only absolute mandatory for Magnetic Resonance Imaging Spectroscopy at 1.5 T. Sensitivity and specificity levels in cancer detection and localization have been improving with functional technique implementation, compared to T2 Weighted-Imaging alone. It has been particularly useful to evaluate patients with abnormal PSA and negative biopsy. Moreover, the information added by the functional techniques may correlate to cancer aggressiveness and therefore be useful to select patients for focal radiotherapy, prostate sparing surgery, focal ablative therapy and active surveillance. However, more studies are needed to compare the functional techniques and understand the advantages and disadvantages of each one. This article reviews the basic principles of prostatic mp-Magnetic Resonance Imaging, emphasizing its role on detection, staging and active surveillance of prostate cancer.
Resumo:
The use of multiparametric magnetic resonance imaging (mp-MRI) for prostate cancer has increased over recent years, mainly for detection, staging, and active surveillance. However, suspicion of recurrence in the set of biochemical failure is becoming a significant reason for clinicians to request mp-MRI. Radiologists should be able to recognize the normal post-treatment MRI findings. Fibrosis and atrophic remnant seminal vesicles after prostatectomy are often found and must be differentiated from local relapse. Moreover, brachytherapy, external beam radiotherapy, cryosurgery, and hormonal therapy tend to diffusely decrease the signal intensity of the peripheral zone on T2-weighted images (T2WI) due to the loss of water content, consequently mimicking tumor and hemorrhage. The combination of T2WI and functional studies like diffusion-weighted imaging and dynamic contrast-enhanced improves the identification of local relapse. Tumor recurrence tends to restrict on diffusion images and avidly enhances after contrast administration either within or outside the gland. The authors provide a pictorial review of the normal findings and the signs of local tumor relapse after radical prostatectomy, external beam radiotherapy, brachytherapy, cryosurgery, and hormonal therapy.