3 resultados para UNIMOLECULAR DECOMPOSITION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Gelastic seizures are a frequent and well established manifestation of the epilepsy associated with hypothalamic hamartomas. The scalp EEG recordings very seldom demonstrate clear spike activity and the information about the ictal epilepsy dynamics is limited. In this work, we try to isolate epileptic rhythms in gelastic seizures and study their generators. Methods: We extracted rhythmic activity from EEG scalp recordings of gelastic seizures using decomposition in independent components (ICA) in three patients, two with hypothalamic hamartomas and one with no hypothalamic lesion. Time analysis of these rhythms and inverse source analysis was done to recover their foci of origin and temporal dynamics. Results: In the two patients with hypothalamic hamartomas consistent ictal delta (2–3 Hz) rhythms were present, with subcortical generators in both and a superficial one in a single patient. The latter pattern was observed in the patient with no hypothalamic hamartoma visible in MRI. The deep generators activated earlier than the superficial ones, suggesting a consistent sub-cortical origin of the rhythmical activity. Conclusions: Our data is compatible with early and brief epileptic generators in deep sub-cortical regions and more superficial ones activating later. Significance: Gelastic seizures express rhythms on scalp EEG compatible with epileptic activity originating in sub-cortical generators and secondarily involving cortical ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The autonomic nervous system (ANS) is known to be an important modulator in the pathogenesis of paroxysmal atrial fibrillation (PAF). Changes in ANS control of heart rate variability (HRV) occur during orthostatism to maintain cardiovascular homeostasis. Wavelet transform has emerged as a useful tool that provides time-frequency decomposition of the signal under investigation, enabling intermittent components of transient phenomena to be analyzed. AIM: To study HRV during head-up tilt (HUT) with wavelet transform analysis in PAF patients and healthy individuals (normals). METHODS: Twenty-one patients with PAF (8 men; age 58 +/- 14 yrs) were examined and compared with 21 normals (7 men, age 48 +/- 12 yrs). After a supine resting period, all subjects underwent passive HUT (60 degrees) while in sinus rhythm. Continuous monitoring of ECG and blood pressure was carried out (Task Force Monitor, CNSystems). Acute changes in RR-intervals were assessed by wavelet analysis and low-frequency power (LF: 0.04-0.15 Hz), high-frequency power (HF: 0.15-0.60 Hz) and LF/HF (sympathovagal) were calculated for 1) the last 2 min of the supine period; 2) the 15 sec of tilting movement (TM); and 3) the 1st (TT1) and 2nd (TT2) min of HUT. Data are expressed as means +/- SEM. RESULTS: Baseline and HUT RR-intervals were similar for the two groups. Supine basal blood pressure was also similar for the two groups, with a sustained increase in PAF patients, and a decrease followed by an increase and then recovery in normals. Basal LF, HF and LF/ HF values in PAF patients were 632 +/- 162 ms2, 534 +/- 231 ms2 and 1.95 +/- 0.39 respectively, and 1058 +/- 223 ms2, 789 +/- 244 ms2 and 2.4 +/- 0.36 respectively in normals (p = NS). During TM, LF, HF and LF/HF values for PAF patients were 747 +/- 277 ms2, 387 +/- 94 ms2 and 2.9 +/- 0.6 respectively, and 1316 +/- 315 ms2, 698 +/- 148 ms2 and 2.8 +/- 0.6 respectively in normals (p < 0.05 for LF and HF). During TF1, LF, HF and LF/ HF values for PAF patients were 1243 +/- 432 ms2, 302 +/- 88 ms2 and 7.7 +/- 2.4 respectively, and 1992 +/- 398 ms2, 333 +/- 76 ms2 and 7.8 +/- 0.98 respectively for normals (p < 0.05 for LF). During TF2, LF, HF and LF/HF values for PAF patients were 871 +/- 256 ms2, 242 +/- 51 ms2 and 4.7 +/- 0.9 respectively, and 1263 +/- 335 ms2, 317 +/- 108 ms2 and 8.6 +/- 0.68 respectively for normals (p < 0.05 for LF/HF). The dynamic profile of HRV showed that LF and HF values in PAF patients did not change significantly during TM or TT2, and LF/HF did not change during TM but increased in TT1 and TT2. CONCLUSION: Patients with PAF present alterations in HRV during orthostatism, with decreased LF and HF power during TM, without significant variations during the first minutes of HUT. These findings suggest that wavelet transform analysis may provide new insights when assessing autonomic heart regulation and highlight the presence of ANS disturbances in PAF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The Panayiotopoulos type of idiopathic occipital epilepsy has peculiar and easily recognizable ictal symptoms, which are associated with complex and variable spike activity over the posterior scalp areas. These characteristics of spikes have prevented localization of the particular brain regions originating clinical manifestations. We studied spike activity in this epilepsy to determine their brain generators. Methods: The EEG of 5 patients (ages 7–9) was recorded, spikes were submitted to blind decomposition in independent components (ICs) and those to source analysis (sLORETA), revealing the spike generators. Coherence analysis evaluated the dynamics of the components. Results: Several ICs were recovered for posterior spikes in contrast to central spikes which originated a single one. Coherence analysis supports a model with epileptic activity originating near lateral occipital area and spreading to cortical temporal or parietal areas. Conclusions: Posterior spikes demonstrate rapid spread of epileptic activity to nearby lobes, starting in the lateral occipital area. In contrast, central spikes remain localized in the rolandic fissure. Significance: Rapid spread of posterior epileptic activity in the Panayitopoulos type of occipital lobe epilepsy is responsible for the variable and poorly localized spike EEG. The lateral occipital cortex is the primary generator of the epileptic activity.