3 resultados para Rättö, Juha
Resumo:
Rett syndrome is a neurodevelopmental disorder caused by mutations in the MECP2 gene. We investigated the genetic basis of disease in a female patient with a Rett-like clinical. Karyotype analysis revealed a pericentric inversion in the X chromosome -46,X,inv(X)(p22.1q28), with breakpoints in the cytobands where the MECP2 and CDKL5 genes are located. FISH analysis revealed that the MECP2 gene is not dislocated by the inversion. However, and in spite of a balanced pattern of X inactivation, this patient displayed hypomethylation and an overexpression of the MECP2 gene at the mRNA level in the lymphocytes (mean fold change: 2.55±0.38) in comparison to a group of control individuals; the expression of the CDKL5 gene was similar to that of controls (mean fold change: 0.98±0.10). No gains or losses were detected in the breakpoint regions encompassing known or suspected transcription regulatory elements. We propose that the de-regulation of MECP2 expression in this patient may be due to alterations in long-range genomic interactions caused by the inversion and hypothesize that this type of epigenetic de-regulation of the MECP2 may be present in other RTT-like patients.
Resumo:
Background: The diagnosis of Rett syndrome (RTT) is based on a set of clinical criteria, irrespective of mutation status. The aims of this study were (1) to define the clinical differences existing between patients with Rett syndrome with (Group I) and without a MECP2 mutation (Group II), and (2) to characterize the phenotypes associated with the more common MECP2 mutations. Patients and Methods: We analyzed 87 patients fulfilling the clinical criteria for RTT. All were observed and videotaped by the same paediatric neurologist. Seven common mutations were considered separately, and associated clinical features analysed. Results: Comparing Group I and II, we found differences concerning psychomotor development prior to onset, acquisition of propositive manipulation and language, and evolving autistic traits. Based on age at observation, we found differences in eye pointing, microcephaly, growth, number of stereotypies, rigidity, ataxia and ataxic-rigid gait, and severity score. Patients with truncating differed from those with missense mutations regarding acquisition of propositive words and independent gait, before the beginning of the disease, and microcephaly, growth, foot length, dystonia, rigidity and severity score, at the time of observation. Patients with the R168X mutation had a more severe phenotype, whereas those with R133C showed a less severe one. Patients with R294X had a hyperactive behaviour, and those with T158M seemed to be particularly ataxic and rigid. Conclusion: A clear regressive period (with loss of prehension and language, deceleration of growth) and the presence of more than three different stereotypies, rigidity and ataxic-rigid gait seemed to be very helpful in differentiating Group I from Group II.
Resumo:
In this work we explored the role of the 3'UTR of the MECP2 gene in patients with clinical diagnosis of RTT and mental retardation; focusing on regions of the 3'UTR with almost 100% conservation at the nucleotide level among mouse and human. By mutation scanning (DOVAM-S technique) the MECP2 3'UTR of a total of 66 affected females were studied. Five3'UTR variants in the MECP2 were found (c.1461+9G>A, c.1461+98insA, c.2595G>A, c.9961C>G and c.9964delC) in our group of patients. None of the variants found is located in putative protein-binding sites nor predicted to have a pathogenic role. Our data suggest that mutations in this region do not account for a large proportion of the RTT cases without a genetic explanation.