2 resultados para Possible distribution range


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Barnacles are a type of seafood with worldwide distribution and abundant along the shores of temperate seas. They are particularly appreciated and regularly consumed in Portugal as well as in Spain, France and South America, but barnacle allergy is a rare condition of which there is only one reference in the indexed literature. The molecular allergens and possible cross-reactivity phenomena implicated (namely with mites) have not been established. Objective: To demonstrate the IgE-mediated allergy to barnacle and to identify the proteins implicated as well as possible cross-reactivity phenomena with mites. Methods: We report the clinical and laboratory data of five patients with documented IgE-mediated allergy to barnacle. The diagnosis was based on a suggestive clinical history combined with positive skin prick tests (SPT) to barnacle – prick to prick method. Two barnacle extracts were prepared (raw and cooked barnacle) and sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) and IgE-immunoblotting were performed. An immunoblotting inhibition assay with Dermatophagoides pteronyssinus was also done in order to evaluate cross-reactivity. Results: All patients had mite-related asthma and the allergic rhinoconjunctivitis; they all experienced mucocutaneous symptoms. All of them had positive SPT to barnacle, and the immunoblotting showed several allergenic fractions with a wide molecular weight range (19 – 94 kDa). The D. pteronyssinus extract inhibited several IgE-binding protein fractions in the barnacle extract. Conclusions: We describe five patients with IgE-mediated barnacle allergy. We also describe a group of IgEbinding+ proteins between 30 and 75 kDa as the allergenic fractions of this type of Crustacea. Cross-reactivity with D. pteronyssinus was demonstrated in two cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: A familial predisposition to abdominal aortic aneurysms (AAAs) is present in approximately one-fifth of patients. Nevertheless, the clinical implications of a positive family history are not known. We investigated the risk of aneurysm-related complications after endovascular aneurysm repair (EVAR) for patients with and without a positive family history of AAA. METHODS: Patients treated with EVAR for intact AAAs in the Erasmus University Medical Center between 2000 and 2012 were included in the study. Family history was obtained by written questionnaire. Familial AAA (fAAA) was defined as patients having at least one first-degree relative affected with aortic aneurysm. The remaining patients were considered sporadic AAA. Cardiovascular risk factors, aneurysm morphology (aneurysm neck, aneurysm sac, and iliac measurements), and follow-up were obtained prospectively. The primary end point was complications after EVAR, a composite of endoleaks, need for secondary interventions, aneurysm sac growth, acute limb ischemia, and postimplantation rupture. Secondary end points were specific components of the primary end point (presence of endoleak, need for secondary intervention, and aneurysm sac growth), aneurysm neck growth, and overall survival. Kaplan-Meier estimates for the primary end point were calculated and compared using log-rank (Mantel-Cox) test of equality. A Cox-regression model was used to calculate the independent risk of complications associated with fAAA. RESULTS: A total of 255 patients were included in the study (88.6% men; age 72 ± 7 years, median follow-up 3.3 years; interquartile range, 2.2-6.1). A total of 51 patients (20.0%) were classified as fAAA. Patients with fAAA were younger (69 vs 72 years; P = .015) and were less likely to have ever smoked (58.8% vs 73.5%; P = .039). Preoperative aneurysm morphology was similar in both groups. Patients with fAAA had significantly more complications after EVAR (35.3% vs 19.1%; P = .013), with a twofold increased risk (adjusted hazard ratio, 2.1; 95% confidence interval, 1.2-3.7). Secondary interventions (39.2% vs 20.1%; P = .004) and aneurysm sac growth (20.8% vs 9.5%; P = .030) were the most important elements accounting for the difference. Furthermore, a trend toward more type I endoleaks during follow-up was observed (15.6% vs 7.4%; P = .063) and no difference in overall survival. CONCLUSIONS: The current study shows that patients with a familial form of AAA develop more aneurysm-related complications after EVAR, despite similar AAA morphology at baseline. These findings suggest that patients with fAAA form a specific subpopulation and create awareness for a possible increase in the risk of complications after EVAR.