2 resultados para Physical modeling
Resumo:
OBJECTIVE: The objective of the study was to develop a model for estimating patient 28-day in-hospital mortality using 2 different statistical approaches. DESIGN: The study was designed to develop an outcome prediction model for 28-day in-hospital mortality using (a) logistic regression with random effects and (b) a multilevel Cox proportional hazards model. SETTING: The study involved 305 intensive care units (ICUs) from the basic Simplified Acute Physiology Score (SAPS) 3 cohort. PATIENTS AND PARTICIPANTS: Patients (n = 17138) were from the SAPS 3 database with follow-up data pertaining to the first 28 days in hospital after ICU admission. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: The database was divided randomly into 5 roughly equal-sized parts (at the ICU level). It was thus possible to run the model-building procedure 5 times, each time taking four fifths of the sample as a development set and the remaining fifth as the validation set. At 28 days after ICU admission, 19.98% of the patients were still in the hospital. Because of the different sampling space and outcome variables, both models presented a better fit in this sample than did the SAPS 3 admission score calibrated to vital status at hospital discharge, both on the general population and in major subgroups. CONCLUSIONS: Both statistical methods can be used to model the 28-day in-hospital mortality better than the SAPS 3 admission model. However, because the logistic regression approach is specifically designed to forecast 28-day mortality, and given the high uncertainty associated with the assumption of the proportionality of risks in the Cox model, the logistic regression approach proved to be superior.
Resumo:
Epilepsy is one of the commonest neurologic diseases and has always been associated with stigma. In the interest of safety, the activities of persons with epilepsy (PWE) are often restricted. In keeping with this, physical exercise has often been discouraged. The precise nature of a person’s seizures (or whether seizures were provoked or unprovoked) may not have been considered. Although there has been a change in attitude over the last few decades, the exact role of exercise in inducing seizures or aggravating epilepsy still remains a matter of discussion among experts in the field. Based mainly on retrospective, but also on prospective, population and animal-based research, the hypothesis that physical exercise is prejudicial has been slowly replaced by the realization that physical exercise might actually be beneficial for PWE. The benefits are related to improvement of physical and mental health parameters and social integration and reduction in markers of stress, epileptiform activity and the number of seizures. Nowadays, the general consensus is that there should be no restrictions to the practice of physical exercise in people with controlled epilepsy, except for scuba diving, skydiving and other sports at heights. Whilst broader restrictions apply for patients with uncontrolled epilepsy, individual risk assessments taking into account the seizure types, frequency, patterns or triggers may allow PWE to enjoy a wide range of physical activities.