3 resultados para Peptide ligand design
Resumo:
Background: Brain natriuretic peptide is a predictor of mortality in multiple cardiovascular diseases but its value in patients with chronic kidney disease is still a matter of debate. Patients and methods: We studied 48 haemodialysis patients with mean age 70.0±13.9 years,62.5% female, 43.8% diabetics, with a mean haemodialysis time of 38.1±29.3 months. To evaluate the role of brain natriuretic peptide as a prognostic factor in this population we performed a two-session evaluation of pre- and postmid-week haemodialysis plasma brain natriuretic peptide concentrations and correlated them with hospitalisation and overall and cardiovascular mortality over a two-year period. Results: There were no significant variations in pre– and post-haemodialysis plasma brain natriuretic peptide concentrations. Pre- and post-haemodialysis brain natriuretic peptide concentrations were significantly greater in patients who died from all causes(p=0.034 and p=0.001, respectively) and from cardiovascular causes (p=0.043 and p=0.001, respectively). Patients who were hospitalised in the two-year study period also presented greater pre- and posthaemodialysis brain natriuretic peptide concentrations(p=0.03 and p=0.036, respectively). Patients with mean brain natriuretic peptide concentrations ≥ 390 pg/mL showed a significantly lower survival at the end of the two-year study period. Conclusion: Brain natriuretic peptide was a good predictor of morbidity and mortality (overall and cardiovascular) in our population.
Resumo:
OBJECTIVE: To determine the prevalence of fibroblast growth factor receptor 1 (FGFR1) mutations and their predicted functional consequences in patients with idiopathic hypogonadotropic hypogonadism (IHH). DESIGN: Cross-sectional study. SETTING: Multicentric. PATIENT(S): Fifty unrelated patients with IHH (21 with Kallmann syndrome and 29 with normosmic IHH). INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Patients were screened for mutations in FGFR1. The functional consequences of mutations were predicted by in silico structural and conservation analysis. RESULT(S): Heterozygous FGFR1 mutations were identified in six (12%) kindreds. These consisted of frameshift mutations (p.Pro33-Alafs*17 and p.Tyr654*) and missense mutations in the signal peptide (p.Trp4Cys), in the D1 extracellular domain (p.Ser96Cys) and in the cytoplasmic tyrosine kinase domain (p.Met719Val). A missense mutation was identified in the alternatively spliced exon 8A (p.Ala353Thr) that exclusively affects the D3 extracellular domain of FGFR1 isoform IIIb. Structure-based and sequence-based prediction methods and the absence of these variants in 200 normal controls were all consistent with a critical role for the mutations in the activity of the receptor. Oligogenic inheritance (FGFR1/CHD7/PROKR2) was found in one patient. CONCLUSION(S): Two FGFR1 isoforms, IIIb and IIIc, result from alternative splicing of exons 8A and 8B, respectively. Loss-of-function of isoform IIIc is a cause of IHH, whereas isoform IIIb is thought to be redundant. Ours is the first report of normosmic IHH associated with a mutation in the alternatively spliced exon 8A and suggests that this disorder can be caused by defects in either of the two alternatively spliced FGFR1 isoforms.
Resumo:
17β-hydroxysteroid dehydrogenase 10 (HSD10) deficiency is a rare X-linked inborn error of isoleucine catabolism. Although this protein has been genetically implicated in Alzheimer's disease pathogenesis, studies of amyloid-β peptide (Aβ) in patients with HSD10 deficiency have not been previously reported. We found, in a severely affected child with HSD10 deficiency, undetectable levels of Aβ in the cerebrospinal fluid, together with low expression of brain-derived neurotrophic factor, α-synuclein, and serotonin metabolites. Confirmation of these findings in other patients would help elucidating mechanisms of synaptic dysfunction in this disease, and highlight the role of Aβ in both early and late periods of life.