2 resultados para Mixture toxicity
Resumo:
Anogenital lichen sclerosus is a chronic, inflammatory, mucocutaneous disorder of significant morbidity. Common symptoms include pruritus, pain, dysuria, and dyspareunia, frequently of difficult control. Photodynamic therapy (PDT) may be an effective therapeutic option in selected cases refractory to first--‐line treatment options. However, procedure--‐related pain is a limiting factor in patient adherence to treatment. Conscious sedation and analgesia with a ready--‐to--‐use gas mixture of nitrous oxide and oxygen is useful in short--‐term procedures. It provides a rapid, effective, and short--‐lived effect, without the need for anesthesiology support. A 75--‐year--‐old woman presented with a highly symptomatic, histologically confirmed vulvar lichen sclerosus, with at least 15 years of evolution. Pain, pruritus, and dysuria were intense and disabling. Treatment with ultrapotent topical corticosteroids proved to be ineffective despite patient compliance. She was then referred for PDT. A total of 3 sessions were performed, held at a mean interval of 9 weeks, and under the analgesic and sedative effect of nitrous oxide/oxygen gas. Response to treatment was evaluated through a daily, self--‐reported pain rating scale. Dysuria remitted completely after the first PDT session. An 80% reduction in pruritus and pain was observed after the third session, and has been sustained for the past six months without further need for topical corticotherapy. Treatment sessions were well tolerated and pain-- free, with no side effects to report. PDT appears to be effective in the symptomatic treatment of vulvar lichen sclerosus. To the authors’ knowledge this is the first case reporting the use of inhaled nitrous oxide/oxygen gas mixture during PDT performed in the genital area. Its analgesic and sedative effects may increase patients’ adherence to this painful procedure. Furthermore, given its safety, it can be easily managed in outpatient clinics by trained dermatologists.
Resumo:
Despite its efficacy, including in the prevention of vertical transmission, the antiretroviral nevirapine is associated with severe idiosyncratic hepatotoxicity and skin rash. The mechanisms underlying nevirapine toxicity are not fully understood, but drug bioactivation to reactive metabolites capable of forming stable protein adducts is thought to be involved. This hypothesis is based on the paradigm that drug reactive metabolites have the potential to bind to self-proteins, which results in drug-modified proteins being perceived as foreign by the immune system. The aim of the present work was to identify hemoglobin adducts in HIV patients as biomarkers of nevirapine haptenation upon bioactivation. The ultimate goal is to develop diagnostic methods for predicting the onset of nevirapine-induced toxic reactions. All included subjects were adults on nevirapine-containing antiretroviral therapy for at least 1month. The protocol received prior approval from the Hospital Ethics Committees and patients gave their written informed consent. Nevirapine-derived adducts with the N-terminal valine of hemoglobin were analyzed by an established liquid chromatography-electrospray ionization-tandem mass spectrometry method and characterized on the basis of retention time and mass spectrometric fragmentation pattern by comparison with adduct standards prepared synthetically. The nevirapine adducts were detected in 12/13 patient samples, and quantified in 11/12 samples (2.58±0.8 fmol/g of hemoglobin). This work represents the first evidence of nevirapine-protein adduct formation in man and confirms the ability of nevirapine to modify self-proteins, thus providing clues to the molecular mechanisms underlying nevirapine toxicity. Moreover, the possibility of assessing nevirapine-protein adduct levels has the potential to become useful for predicting the onset of nevirapine-induced adverse reactions.