2 resultados para JOINT COMPOSITE INTERVAL MAPPING
Resumo:
1.Pre-assessment data of the patient A 2-year-old boy, weighing 15 kg was admitted with a history of limited mouth opening(inter-incisor distance of 6 mm), hypoplastic and retrognathic mandible (bird face deformity) and facial asymmetry from left temporomandibular joint ankylosis (TMJA). He was born at term, after an uneventful pregnancy, and there was no report of trauma during caesarean section. No other possible aetiologies were identified. He was scheduled for mandibular osteotomy. Preoperative ENT examination revealed adenotonsillar hypertrophy. 2. Anaesthetic Plan A fiberoptic nasal intubation was performed under deep inhalation anaesthesia with sevoflurane, with the patient breathing spontaneously. Midazolam (0.05 mg.kg-1) and alfentanil (0.03 mg.kg-1) were given and anaesthesia was maintained with O2/air and sevoflurane. No neuromuscular blocking agent was administered since the surgical team needed facial nerve monitoring. 3. Description of incident During surgery an accidental extubation occurred and an attempt was made to reintubate the trachea by direct laryngoscopy. Although the osteotomy was nearly completed, the vocal cords could not be visualized (Cormack-Lehane grade IV laryngoscopic view). 4. Solving the problem Re-intubation was finally accomplished with the flexible fiberscope and the procedure was concluded without any more incidents. Extubation was performed 24 hours postoperatively with the patient fully awake. After surgery mouth opening improved to inter-incisor gap of 15 mm. 5. Lessons learned and take home message Two airways issues present in this case can lead to difficultventilation and intubation: TMJA and adenotonsillar hypertrophy. These difficulties were anticipated and managed accordingly. The accidental extubation brought to our attention the fact that, even after surgical correction, this airway remains challenging. Even with intensive jaw stretchingexercises there is a high incidence of re-ankylosis, especially in younger patients. One should bear that in mind when anaesthetizing patients with TMJA.
Resumo:
OBJECTIVE: A familial predisposition to abdominal aortic aneurysms (AAAs) is present in approximately one-fifth of patients. Nevertheless, the clinical implications of a positive family history are not known. We investigated the risk of aneurysm-related complications after endovascular aneurysm repair (EVAR) for patients with and without a positive family history of AAA. METHODS: Patients treated with EVAR for intact AAAs in the Erasmus University Medical Center between 2000 and 2012 were included in the study. Family history was obtained by written questionnaire. Familial AAA (fAAA) was defined as patients having at least one first-degree relative affected with aortic aneurysm. The remaining patients were considered sporadic AAA. Cardiovascular risk factors, aneurysm morphology (aneurysm neck, aneurysm sac, and iliac measurements), and follow-up were obtained prospectively. The primary end point was complications after EVAR, a composite of endoleaks, need for secondary interventions, aneurysm sac growth, acute limb ischemia, and postimplantation rupture. Secondary end points were specific components of the primary end point (presence of endoleak, need for secondary intervention, and aneurysm sac growth), aneurysm neck growth, and overall survival. Kaplan-Meier estimates for the primary end point were calculated and compared using log-rank (Mantel-Cox) test of equality. A Cox-regression model was used to calculate the independent risk of complications associated with fAAA. RESULTS: A total of 255 patients were included in the study (88.6% men; age 72 ± 7 years, median follow-up 3.3 years; interquartile range, 2.2-6.1). A total of 51 patients (20.0%) were classified as fAAA. Patients with fAAA were younger (69 vs 72 years; P = .015) and were less likely to have ever smoked (58.8% vs 73.5%; P = .039). Preoperative aneurysm morphology was similar in both groups. Patients with fAAA had significantly more complications after EVAR (35.3% vs 19.1%; P = .013), with a twofold increased risk (adjusted hazard ratio, 2.1; 95% confidence interval, 1.2-3.7). Secondary interventions (39.2% vs 20.1%; P = .004) and aneurysm sac growth (20.8% vs 9.5%; P = .030) were the most important elements accounting for the difference. Furthermore, a trend toward more type I endoleaks during follow-up was observed (15.6% vs 7.4%; P = .063) and no difference in overall survival. CONCLUSIONS: The current study shows that patients with a familial form of AAA develop more aneurysm-related complications after EVAR, despite similar AAA morphology at baseline. These findings suggest that patients with fAAA form a specific subpopulation and create awareness for a possible increase in the risk of complications after EVAR.