5 resultados para Healthy living
Resumo:
Objective: To compare measurements of the upper arm cross-sectional areas (total arm area,arm muscle area, and arm fat area of healthy neonates) as calculated using anthropometry with the values obtained by ultrasonography. Materials and methods: This study was performed on 60 consecutively born healthy neonates: gestational age (mean6SD) 39.661.2 weeks, birth weight 3287.16307.7 g, 27 males (45%) and 33 females (55%). Mid-arm circumference and tricipital skinfold thickness measurements were taken on the left upper mid-arm according to the conventional anthropometric method to calculate total arm area, arm muscle area and arm fat area. The ultrasound evaluation was performed at the same arm location using a Toshiba sonolayer SSA-250AÒ, which allows the calculation of the total arm area, arm muscle area and arm fat area by the number of pixels enclosed in the plotted areas. Statistical analysis: whenever appropriate, parametric and non-parametric tests were used in order to compare measurements of paired samples and of groups of samples. Results: No significant differences between males and females were found in any evaluated measurements, estimated either by anthropometry or by ultrasound. Also the median of total arm area did not differ significantly with either method (P50.337). Although there is evidence of concordance of the total arm area measurements (r50.68, 95% CI: 0.55–0.77) the two methods of measurement differed for arm muscle area and arm fat area. The estimated median of measurements by ultrasound for arm muscle area were significantly lower than those estimated by the anthropometric method, which differed by as much as 111% (P,0.001). The estimated median ultrasound measurement of the arm fat was higher than the anthropometric arm fat area by as much as 31% (P,0.001). Conclusion: Compared with ultrasound measurements using skinfold measurements and mid-arm circumference without further correction may lead to overestimation of the cross-sectional area of muscle and underestimation of the cross-sectional fat area. The correlation between the two methods could be interpreted as an indication for further search of correction factors in the equations.
Resumo:
We aimed to investigate the feasibility of an experimental system for simultaneous transcranial DC stimulation(tDCS) and EEG recording in human epilepsy. We report tolerability of this system in a cross-over controlled trial with 15 healthy subjects and preliminary effects of its use, testing repeated tDCS sessions, in two patients with drug-refractory Continuous Spike-Wave Discharges During Slow Sleep (CSWS). Our system combining continuous recording of the EEG with tDCS allows detailed evaluation of the interictal activity during the entire process. Stimulation with 1 mA was well‐tolerated in both healthy volunteers and patients with refractory epilepsy. The large reduction in interictal epileptiform EEG discharges in the two subjects with epilepsy supports further investigation of tDCS using this combined method of stimulation and monitoring in epilepsy. Continuous monitoring of epileptic activity throughout tDCS improves safety and allows detailed evaluation of epileptic activity changes induced by tDCS in patients.
Resumo:
The main objective of this review is to provide a descriptive analysis of the biological and physiological markers of tactile sensorial processing in healthy, full-term newborns. Research articles were selected according to the following study design criteria: (a) tactile stimulation for touch sense as an independent variable; (b) having at least one biological or physiological variable as a dependent variable; and (c) the group of participants were characterized as full-term and healthy newborns; a mixed group of full-term newborns and preterm newborns; or premature newborns with appropriate-weight-for-gestational age and without clinical differences or considered to have a normal, healthy somatosensory system. Studies were then grouped according to the dependent variable type, and only those that met the aforementioned three major criteria were described. Cortisol level, growth measures, and urinary catecholamine, serotonin, and melatonin levels were reported as biological-marker candidates for tactile sensorial processing. Heart rate, body temperature, skin-conductance activity, and vagal reactivity were described as neurovegetative-marker candidates. Somatosensory evoked potentials, somatosensory evoked magnetic fields, and functional neuroimaging data also were included.
Resumo:
OBJECTIVE: The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. STUDY DESIGN: In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. RESULT: Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031-0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002-0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125-1.147; P=0.016) in female offspring were found. CONCLUSION: Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.