6 resultados para HIGH-RESOLUTION EEG


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinically childhood occipital lobe epilepsy (OLE) manifests itself with distinct syndromes. The traditional EEG recordings have not been able to overcome the difficulty in correlating the ictal clinical symptoms to the onset in particular areas of the occipital lobes. To understand these syndromes it is important to map with more precision the epileptogenic cortical regions in OLE. Experimentally, we studied three idiopathic childhood OLE patients with EEG source analysis and with the simultaneous acquisition of EEG and fMRI, to map the BOLD effect associated with EEG spikes. The spatial overlap between the EEG and BOLD results was not very good, but the fMRI suggested localizations more consistent with the ictal clinical manifestations of each type of epileptic syndrome. Since our first results show that by associating the BOLD effect with interictal spikes the epileptogenic areas are mapped to localizations different from those calculated from EEG sources and that by using different EEG/fMRI processing methods our results differ to some extent, it is very important to compare the different methods of processing the localization of activation and develop a good methodology for obtaining co-registration maps of high resolution EEG with BOLD localizations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of focal epilepsy, the simultaneous combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) holds a great promise as a technique by which the hemodynamic correlates of interictal spikes detected on scalp EEG can be identified. The fact that traditional EEG recordings have not been able to overcome the difficulty in correlating the ictal clinical symptoms to the onset in particular areas of the lobes, brings the need of mapping with more precision the epileptogenic cortical regions. On the other hand, fMRI suggested localizations more consistent with the ictal clinical manifestations detected. This study was developed in order to improve the knowledge about the way parameters involved in the physical and mathematical data, produced by the EEG/fMRI technique processing, would influence the final results. The evaluation of the accuracy was made by comparing the BOLD results with: the high resolution EEG maps; the malformative lesions detected in the T1 weighted MR images; and the anatomical localizations of the diagnosed symptomatology of each studied patient. The optimization of the set of parameters used, will provide an important contribution to the diagnosis of epileptogenic focuses, in patients included on an epilepsy surgery evaluation program. The results obtained allowed us to conclude that: by associating the BOLD effect with interictal spikes, the epileptogenic areas are mapped to localizations different from those obtained by the EEG maps representing the electrical potential distribution across the scalp (EEG); there is an important and solid bond between the variation of particular parameters (manipulated during the fMRI data processing) and the optimization of the final results, from which smoothing, deleted volumes, HRF (used to convolve with the activation design), and the shape of the Gamma function can be certainly emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Localizing epileptic foci in posterior brain epilepsy remains a difficult exercise in surgery for epilepsy evaluation. Neither clinical manifestations, neurological, EEG nor neuropsychological evaluations provide strong information about the area of onset, and fast spread of paroxysms often produces mixed features of occipital, temporal and parietal symptoms. We investigated the usefulness of the N170 event-related potential to map epileptic activity in these patients. Methods: A group of seven patients with symptomatic posterior cortex epilepsy were submitted to a high-resolution EEG (78 electrodes), with recordings of interictal spikes and face-evoked N170. Generators of spikes and N170 were localized by source analysis. Range of normal N170 asymmetry was determined in 30 healthy volunteers. Results: In 3 out of 7 patients the N170 inter-hemispheric asymmetry was outside control values. Those were the patients whose spike sources were nearest (within 3 cm) to the fusiform gyrus, while foci further away did not affect the N170 ratio. Conclusions: N170 event-related potential provides useful information about focal cortical dysfunction produced by epileptic foci located in the close neighborhood of the fusiform gyrus, but are unaffected by foci further away. Significance: The N170 evoked by faces can improve the epileptic foci localization in posterior brain epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Early onset benign occipital lobe epilepsy (Panayiotopoulos syndrome [PS]) is a common and easily recognizable epilepsy. Interictal EEG spike activity is often multifocal but most frequently localized in the occipital lobes. The origin and clinical significance of the extra-occipital spikes remain poorly understood. Methods: Three patients with the PS and interictal EEG spikes with frontal lobe topography were studied using high-resolution EEG. Independent component analysis (ICA) was used to decompose the spikes in components with distinct temporal dynamics. The components were mapped in the scalp with a spline-laplacian algorithm. Results: The change in scalp potential topography from spike onset to peak, suggests the contribution of several intracranial generators, with different kinetics of activation and significant overlap. ICA was able to separate the major contributors to frontal spikes and consistently revealed an early activating group of components over the occipital areas in all the patients. The local origin of these early potentials was established by the spline-laplacian montage. Conclusions: Frontal spikes in PS are consistently associated with early and unilateral occipital lobe activation, suggesting a posteroanterior spike propagation. Significance: Frontal spikes in the PS represent a secondary activation triggered by occipital interictal discharges and do not represent an independent focus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Childhood absence epilepsy (CAE) is a syndrome with well-defined electroclinical features but unknown pathological basis. An increased thalamic tonic GABA inhibition has recently been discovered on animal models (Cope et al., 2009), but its relevance for human CAE is unproven. METHODS: We studied an 11-year-old boy, presenting the typical clinical features of CAE, but spike-wave discharges (SWD) restricted to one hemisphere. RESULTS: High-resolution EEG failed to demonstrate independent contralateral hemisphere epileptic activity. Consistently, simultaneous EEG-fMRI revealed the typical thalamic BOLD activation, associated with caudate and default mode network deactivation, but restricted to the hemisphere with SWD. Cortical BOLD activations were localized on the ipsilateral pars transverse. Magnetic resonance spectroscopy, using MEGA-PRESS, showed that the GABA/creatine ratio was 2.6 times higher in the hemisphere with SWD than in the unaffected one, reflecting a higher GABA concentration. Similar comparisons for the patient's occipital cortex and thalamus of a healthy volunteer yielded asymmetries below 25%. SIGNIFICANCE: In a clinical case of CAE with EEG and fMRI-BOLD manifestations restricted to one hemisphere, we found an associated increase in thalamic GABA concentration consistent with a role for this abnormality in human CAE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: The epilepsy associated with hypothalamic hamartomas (HHs) has typical clinical, electrophysiologic, and behavioral manifestations refractory to drug therapy and with unfavorable evolution. It is well known that only sessile lesions produce epilepsy, but no correlation has been established between the different types of sessile hamartomas and the diverse manifestations of the epilepsy. We correlate anatomic details of the hamartoma and the clinical and neurophysiologic manifestations of the associated epilepsy. METHODS: HHs of seven patients with epilepsy (ages 2- 25 years) were classified as to lateralization and connection to the anteroposterior axis of the hypothalamus by using high-resolution brain magnetic resonance imaging. We correlated the anatomic classification with the clinical and neurophysiologic manifestations of the epilepsy as evaluated in long-term (24 h) video-EEG recordings. RESULTS: HHs ranged in size from 0.4 to 2.6 cc, with complete lateralization in six of seven patients. Ictal manifestations showed good correlation with the lobar involvement of ictal/interictal EEGs. These manifestations suggest the existence of two types of cortical involvement, one associated with the temporal lobe, produced by hamartomas connected to the posterior hypothalamus (mamillary bodies), and the other associated with the frontal lobe, seen in lesions connecting to the middle hypothalamus. CONCLUSIONS: A consistent clinical and neurophysiologic pattern of either temporal or frontal lobe cortical secondary involvement was found in the patients of our series. It depends on whether the hamartoma connects to the mamillary bodies (temporal lobe cases) or whether it connects to the medial hypothalamus (frontal lobe cases).