4 resultados para HEAT CURRENT
Resumo:
Diabetes mellitus (DM) is a global epidemic, and diabetic foot ulcer (DFU) is one of its most serious and costly complications. DFUs result from a complex interaction of a number of risk factors. Once the protective layer of skin is broken, deep tissues are exposed to bacterial infection that progresses rapidly. Patients with DFUs frequently require amputations of the lower limbs and, in more than half the cases, infection is the preponderant factor. Given the challenges of treating these complex infections, this paper aims to provide a hospital-based framework for the diagnosis and treatment of diabetic foot infections (DFIs). We propose a treatment-oriented assessment of DFIs based on a cross-examination of the medical, foot, and wound history; a systemized and detailed physical examination; and the results of complementary diagnostic procedures. We stress the need for a clinical diagnosis of DFIs and the importance of microbiological evaluation for antibiotic therapy guidance. Regarding treatment, we propose a multidisciplinary approach prioritizing invasive infection drainage, necrosis debridement, and the prompt start of empirical antibiotic therapy, followed by complete and appropriate vascular reconstruction. For severe DFIs, we suggest that negative pressure wound therapy (NPWT) be included in the treatment pathway. We also provide rules for managing particular situations, such as osteomyelitis. It is our hope that this protocol will improve the hospital management of DFIs and, ultimately, the prognosis of DFI patients.
Resumo:
Urticaria, defined by the presence of wheals and/or angioedema,is a common condition in children, prompting parents to consult physicians. For its successful management, paediatric-specific features must be taken into account, regarding the identification of eliciting triggers and pharmacological therapy. This review systematically discusses the current best-available evidence on spontaneous acute and chronic urticaria as well as physical and other urticaria types in children. Potential underlying causes, namely infections, food and drug hypersensitivity, autoreactivity and autoimmune or other conditions, and eliciting stimuli are considered, with practical recommendations for specific diagnostic approaches. Second-generation antihistamines are the mainstay of pharmacological treatment aimed at relief of symptoms, which require dose adjustment for paediatric use. Other therapeutic interventions are also discussed. In addition, unmet needs are highlighted, aiming to promote research into the paediatric population, ultimately aiming at the effective management of childhood urticaria.
Resumo:
Although a variety of nanoparticles (NPs) functionalized with amphotericin B, an antifungal agent widely used in the clinic, have been studied in the last years their cytotoxicity profile remains elusive. Here we show that human endothelial cells take up high amounts of silica nanoparticles (SNPs) conjugated with amphotericin B (AmB) (SNP-AmB) (65.4 12.4 pg of Si per cell) through macropinocytosis while human fibroblasts internalize relatively low amounts (2.3 0.4 pg of Si per cell) because of their low capacity for macropinocytosis. We further show that concentrations of SNP-AmB and SNP up to 400 mg/mL do not substantially affect fibroblasts. In contrast, endothelial cells are sensitive to low concentrations of NPs (above 10 mg/mL), in particular to SNP-AmB. This is because of their capacity to internalize high concentration of NPs and high sensitivity of their membrane to the effects of AmB. Low-moderate concentrations of SNP-AmB (up to 100 mg/mL) induce the production of reactive oxygen species (ROS), LDH release, high expression of pro-inflammatory cytokines and chemokines (IL-8, IL-6, G-CSF, CCL4, IL-1b and CSF2) and high expression of heat shock proteins (HSPs) at gene and protein levels. High concentrations of SNP-AmB (above 100 ug/mL) disturb membrane integrity and kill rapidly human cells(60% after 5 h). This effect is higher in SNP-AmB than in SNP.
Resumo:
Coronary optical coherence tomography has emerged as the most powerful in-vivo imaging modality to evaluate vessel structure in detail. It is a useful research tool that provides insights into the pathogenesis of coronary artery disease. This technology has an important clinical role that is still being developed. We review the evidence on the wide spectrum of potential clinical applications for coronary optical coherence tomography, which encompass the successive stages in coronary artery disease management: accurate lesion characterization and quantification of stenosis, guidance for the decision to perform percutaneous coronary intervention and subsequent planning, and evaluation of immediate and long-term results following intervention.