3 resultados para FUNGICIDE RESIDUES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Genetic changes in influenza surface and internal genes can alter viral fitness and virulence. Mutation trend analysis and antiviral drug susceptibility profiling of A(H1N1)pdm09 viruses is essential for risk assessment of emergent strains and disease management. Objective: To profile genomic signatures and antiviral drug resistance of A(H1N1)pdm09 viruses and to discuss the potential role of mutated residues in human host adaptation and virulence. Study design: A(H1N1)pdm09 viruses circulating in Portugal during pandemic and post-pandemic periods and 2009/2010 season. Viruses were isolated in MDCK-SIAT1 cell culture and subjected to mutation analysis of surface and internal proteins, and to antiviral drug susceptibility profiling. Results: The A(H1N1)pdm09 strains circulating during the epidemic period in Portugal were resistant to amantadine. The majority of the strains were found to be susceptible to oseltamivir and zanamivir, with five outliers to neuraminidase inhibitors (NAIs) identified. Specific mutation patterns were detected within the functional domains of internal proteins PB2, PB1, PA, NP, NS1, M1 and NS2/NEP, which were common to all isolates and also some cluster-specific. Discussion: Modification of viral genome transcription, replication and apoptosis kinetics, changes in antigenicity and antiviral drug susceptibility are known determinants of virulence. We report several point mutations with putative roles in viral fitness and virulence, and discuss their potential to result in more virulent phenotypes. Monitoring of specific mutations and genetic patterns in influenza viral genes is essential for risk assessing emergent strains, disease epidemiology and public health implications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the full genetic characterization of an insect-specific flavivirus (ISF) from Culex theileri (Theobald) mosquitoes collected in Portugal. This represents the first isolation and full characterization of an ISF from Portuguese mosquitoes. The virus, designated CTFV, for Culex theileri flavivirus, was isolated in the C6/36 Stegomyia albopicta (=Aedes albopictus) cell line, and failed to replicate in vertebrate (Vero) cells in common with other ISFs. The CTFV genome encodes a single polyprotein with 3357 residues showing all the features expected for those of flaviviruses. Phylogenetic analyses based on all ISF sequences available to date, place CTFV among Culex-associated flaviviruses, grouping with recently published NS5 partial sequences documented from mosquitoes collected in the Iberian Peninsula, and with Quang Binh virus (isolated in Vietnam) as a close relative. No CTFV sequences were found integrated in their host’s genome using a range of specific PCR primers designed to the prM/E, NS3, and NS5 region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-major resistance mutations were detected in the virus population from naïve patients, but two amino acids that are secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and contribute to improve the clinical monitoring of HIV-2-infected patients.