17 resultados para EPILEPSY-PRONE RAT
Resumo:
Diabetes mellitus is an epidemic multisystemic chronic disease that frequently is complicated by complex wound infections. Innovative topical antimicrobial therapy agents are potentially useful for multimodal treatment of these infections. However, an appropriately standardized in vivo model is currently not available to facilitate the screening of these emerging products and their effect on wound healing. To develop such a model, we analyzed, tested, and modified published models of wound healing. We optimized various aspects of the model, including animal species, diabetes induction method, hair removal technique, splint and dressing methods, the control of unintentional bacterial infection, sampling methods for the evaluation of bacterial burden, and aspects of the microscopic and macroscopic assessment of wound healing, all while taking into consideration animal welfare and the '3Rs' principle. We thus developed a new wound infection model in rats that is optimized for testing topical antimicrobial therapy agents. This model accurately reproduces the pathophysiology of infected diabetic wound healing and includes the current standard treatment (that is, debridement). The numerous benefits of this model include the ready availability of necessary materials, simple techniques, high reproducibility, and practicality for experiments with large sample sizes. Furthermore, given its similarities to infected-wound healing and treatment in humans, our new model can serve as a valid alternative for applied research.
Resumo:
We aimed to investigate the feasibility of an experimental system for simultaneous transcranial DC stimulation(tDCS) and EEG recording in human epilepsy. We report tolerability of this system in a cross-over controlled trial with 15 healthy subjects and preliminary effects of its use, testing repeated tDCS sessions, in two patients with drug-refractory Continuous Spike-Wave Discharges During Slow Sleep (CSWS). Our system combining continuous recording of the EEG with tDCS allows detailed evaluation of the interictal activity during the entire process. Stimulation with 1 mA was well‐tolerated in both healthy volunteers and patients with refractory epilepsy. The large reduction in interictal epileptiform EEG discharges in the two subjects with epilepsy supports further investigation of tDCS using this combined method of stimulation and monitoring in epilepsy. Continuous monitoring of epileptic activity throughout tDCS improves safety and allows detailed evaluation of epileptic activity changes induced by tDCS in patients.
Resumo:
Background: Although epilepsy is common in children with cerebral palsy (CP), no data exists on prevalence rates of CP and epilepsy. Aims: To describe epilepsy in children with CP, and to examine the association between epilepsy and neonatal characteristics, associated impairments and CP subtypes. Methods: Data on 9654 children with CP born between 1976 and 1998 and registered in 17 European registers belonging to the SCPE network (Surveillance of Cerebral Palsy in Europe)were analyzed. Results: A total of 3424 (35%) children had a history of epilepsy. Among them, seventy-two percent were on medication at time of registration. Epilepsy was more frequent in children with a dyskinetic or bilateral spastic type and with other associated impairments. The prevalence of CP with epilepsy was 0.69 (99% CI, 0.66e0.72) per 1000 live births and followed a quadratic trend with an increase from 1976 to 1983 and a decrease afterwards. Neonatal characteristics independently associated with epilepsy were the presence of a brain malformation or a syndrome, a term or moderately preterm birth compared with a very premature birth, and signs of perinatal distress including neonatal seizures, neonatal ventilation and admission to a neonatal care unit. Conclusions: The prevalence of CP with epilepsy followed a quadratic trend in 1976e1998 and mirrored that of the prevalence of CP during this period. The observed relationship between epilepsy and associated impairments was expected; however it requires longitudinal studies to be better understood.
Resumo:
Objective: Localizing epileptic foci in posterior brain epilepsy remains a difficult exercise in surgery for epilepsy evaluation. Neither clinical manifestations, neurological, EEG nor neuropsychological evaluations provide strong information about the area of onset, and fast spread of paroxysms often produces mixed features of occipital, temporal and parietal symptoms. We investigated the usefulness of the N170 event-related potential to map epileptic activity in these patients. Methods: A group of seven patients with symptomatic posterior cortex epilepsy were submitted to a high-resolution EEG (78 electrodes), with recordings of interictal spikes and face-evoked N170. Generators of spikes and N170 were localized by source analysis. Range of normal N170 asymmetry was determined in 30 healthy volunteers. Results: In 3 out of 7 patients the N170 inter-hemispheric asymmetry was outside control values. Those were the patients whose spike sources were nearest (within 3 cm) to the fusiform gyrus, while foci further away did not affect the N170 ratio. Conclusions: N170 event-related potential provides useful information about focal cortical dysfunction produced by epileptic foci located in the close neighborhood of the fusiform gyrus, but are unaffected by foci further away. Significance: The N170 evoked by faces can improve the epileptic foci localization in posterior brain epilepsy.
Resumo:
Introduction: The rat is probably the animal species most widely used in experimental studies on nerve repair. The aim of this work was to contribute to a better understanding of the morphology and blood supply of the rat brachial plexus. Material and Methods: Thirty adult rats were studied regarding brachial plexus morphology and blood supply. Intravascular injection and dissection under an operating microscope, as well as light microscopy and scanning electron microscopy techniques were used to define the microanatomy of the rat brachial plexus and its vessels. Results: The rat brachial plexus was slightly different from the human brachial plexus. The arterial and venous supply to the brachial plexus plexus was derived directly or indirectly from neighboring vessels. These vessels formed dense and interconnected plexuses in the epineurium, perineurium, and endoneurium. Several brachial plexus components were accompanied for a relatively long portion of their length by large and constant blood vessels that supplied their epineural plexus, making it possible to raise these nerves as flaps. Discussion: The blood supply to the rat brachial plexus is not very different from that reported in humans, making the rat a useful animal model for the experimental study of peripheral nerve pathophysiology and treatment. Conclusion: Our results support the homology between the rat and the human brachial plexus in terms of morphology and blood supply. This work suggests that several components of the rat brachial plexus can be used as nerve flaps, including predominantly motor, sensory or mixed nerve fibers. This information may facilitate new experimental procedures in this animal model.
Resumo:
Objective: The epilepsy associated with the hypothalamic hamartomas constitutes a syndrome with peculiar seizures, usually refractory to medical therapy, mild cognitive delay, behavioural problems and multifocal spike activity in the scalp electroencephalogram (EEG). The cortical origin of spikes has been widely assumed but not specifically demonstrated. Methods: We present results of a source analysis of interictal spikes from 4 patients (age 2–25 years) with epilepsy and hypothalamic hamartoma, using EEG scalp recordings (32 electrodes) and realistic boundary element models constructed from volumetric magnetic resonance imaging (MRIs). Multifocal spike activity was the most common finding, distributed mainly over the frontal and temporal lobes. A spike classification based on scalp topography was done and averaging within each class performed to improve the signal to noise ratio. Single moving dipole models were used, as well as the Rap-MUSIC algorithm. Results: All spikes with good signal to noise ratio were best explained by initial deep sources in the neighbourhood of the hamartoma, with late sources located in the cortex. Not a single patient could have his spike activity explained by a combination of cortical sources. Conclusions: Overall, the results demonstrate a consistent origin of spike activity in the subcortical region in the neighbourhood of the hamartoma, with late spread to cortical areas.
Resumo:
Objective: The Panayiotopoulos type of idiopathic occipital epilepsy has peculiar and easily recognizable ictal symptoms, which are associated with complex and variable spike activity over the posterior scalp areas. These characteristics of spikes have prevented localization of the particular brain regions originating clinical manifestations. We studied spike activity in this epilepsy to determine their brain generators. Methods: The EEG of 5 patients (ages 7–9) was recorded, spikes were submitted to blind decomposition in independent components (ICs) and those to source analysis (sLORETA), revealing the spike generators. Coherence analysis evaluated the dynamics of the components. Results: Several ICs were recovered for posterior spikes in contrast to central spikes which originated a single one. Coherence analysis supports a model with epileptic activity originating near lateral occipital area and spreading to cortical temporal or parietal areas. Conclusions: Posterior spikes demonstrate rapid spread of epileptic activity to nearby lobes, starting in the lateral occipital area. In contrast, central spikes remain localized in the rolandic fissure. Significance: Rapid spread of posterior epileptic activity in the Panayitopoulos type of occipital lobe epilepsy is responsible for the variable and poorly localized spike EEG. The lateral occipital cortex is the primary generator of the epileptic activity.
Resumo:
Objective: Early onset benign occipital lobe epilepsy (Panayiotopoulos syndrome [PS]) is a common and easily recognizable epilepsy. Interictal EEG spike activity is often multifocal but most frequently localized in the occipital lobes. The origin and clinical significance of the extra-occipital spikes remain poorly understood. Methods: Three patients with the PS and interictal EEG spikes with frontal lobe topography were studied using high-resolution EEG. Independent component analysis (ICA) was used to decompose the spikes in components with distinct temporal dynamics. The components were mapped in the scalp with a spline-laplacian algorithm. Results: The change in scalp potential topography from spike onset to peak, suggests the contribution of several intracranial generators, with different kinetics of activation and significant overlap. ICA was able to separate the major contributors to frontal spikes and consistently revealed an early activating group of components over the occipital areas in all the patients. The local origin of these early potentials was established by the spline-laplacian montage. Conclusions: Frontal spikes in PS are consistently associated with early and unilateral occipital lobe activation, suggesting a posteroanterior spike propagation. Significance: Frontal spikes in the PS represent a secondary activation triggered by occipital interictal discharges and do not represent an independent focus.
Resumo:
Objective: The epilepsies associated with the tuberous sclerosis complex (TSC) are very often refractory to medical therapy. Surgery for epilepsy is an effective alternative when the critical link between the localization of seizure onset in the scalp and a particular cortical tuber can be established. In this study we perform analysis of ictal and interictal EEG to improve such link. Methods: The ictal and interictal recordings of four patients with TSC undergoing surgery for epilepsy were submitted to independent component analysis (ICA), followed by source analysis, using the sLORETA algorithm. The localizations obtained for the ictal EEG and for the average interictal spikes were compared. Results: The ICA of ictal EEG produced consistent results in different events, and there was good agreement with the tubers that were successfully removed in three of the four patients (one patient refused surgery). In some patients there was a large discrepancy between the localization of ictal and interictal sources. The interictal activity produced more widespread source localizations. Conclusions: The use of ICA of ictal EEG followed by the use of source analysis methods in four cases of epilepsy and TSC was able to localize the epileptic generators very near the lesions successfully removed in surgery for epilepsy. Significance: The ICA of ictal EEG events may be a useful add-on to the tools used to establish the connection between epileptic scalp activity and the cortical tubers originating it, in patients with TSC considered for surgery of epilepsy.
Resumo:
Clinically childhood occipital lobe epilepsy (OLE) manifests itself with distinct syndromes. The traditional EEG recordings have not been able to overcome the difficulty in correlating the ictal clinical symptoms to the onset in particular areas of the occipital lobes. To understand these syndromes it is important to map with more precision the epileptogenic cortical regions in OLE. Experimentally, we studied three idiopathic childhood OLE patients with EEG source analysis and with the simultaneous acquisition of EEG and fMRI, to map the BOLD effect associated with EEG spikes. The spatial overlap between the EEG and BOLD results was not very good, but the fMRI suggested localizations more consistent with the ictal clinical manifestations of each type of epileptic syndrome. Since our first results show that by associating the BOLD effect with interictal spikes the epileptogenic areas are mapped to localizations different from those calculated from EEG sources and that by using different EEG/fMRI processing methods our results differ to some extent, it is very important to compare the different methods of processing the localization of activation and develop a good methodology for obtaining co-registration maps of high resolution EEG with BOLD localizations.
Optimization of fMRI Processing Parameters for Simutaneous Acquisition of EEG/fMRI in Focal Epilepsy
Resumo:
In the context of focal epilepsy, the simultaneous combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) holds a great promise as a technique by which the hemodynamic correlates of interictal spikes detected on scalp EEG can be identified. The fact that traditional EEG recordings have not been able to overcome the difficulty in correlating the ictal clinical symptoms to the onset in particular areas of the lobes, brings the need of mapping with more precision the epileptogenic cortical regions. On the other hand, fMRI suggested localizations more consistent with the ictal clinical manifestations detected. This study was developed in order to improve the knowledge about the way parameters involved in the physical and mathematical data, produced by the EEG/fMRI technique processing, would influence the final results. The evaluation of the accuracy was made by comparing the BOLD results with: the high resolution EEG maps; the malformative lesions detected in the T1 weighted MR images; and the anatomical localizations of the diagnosed symptomatology of each studied patient. The optimization of the set of parameters used, will provide an important contribution to the diagnosis of epileptogenic focuses, in patients included on an epilepsy surgery evaluation program. The results obtained allowed us to conclude that: by associating the BOLD effect with interictal spikes, the epileptogenic areas are mapped to localizations different from those obtained by the EEG maps representing the electrical potential distribution across the scalp (EEG); there is an important and solid bond between the variation of particular parameters (manipulated during the fMRI data processing) and the optimization of the final results, from which smoothing, deleted volumes, HRF (used to convolve with the activation design), and the shape of the Gamma function can be certainly emphasized.
Resumo:
Epilepsy is one of the commonest neurologic diseases and has always been associated with stigma. In the interest of safety, the activities of persons with epilepsy (PWE) are often restricted. In keeping with this, physical exercise has often been discouraged. The precise nature of a person’s seizures (or whether seizures were provoked or unprovoked) may not have been considered. Although there has been a change in attitude over the last few decades, the exact role of exercise in inducing seizures or aggravating epilepsy still remains a matter of discussion among experts in the field. Based mainly on retrospective, but also on prospective, population and animal-based research, the hypothesis that physical exercise is prejudicial has been slowly replaced by the realization that physical exercise might actually be beneficial for PWE. The benefits are related to improvement of physical and mental health parameters and social integration and reduction in markers of stress, epileptiform activity and the number of seizures. Nowadays, the general consensus is that there should be no restrictions to the practice of physical exercise in people with controlled epilepsy, except for scuba diving, skydiving and other sports at heights. Whilst broader restrictions apply for patients with uncontrolled epilepsy, individual risk assessments taking into account the seizure types, frequency, patterns or triggers may allow PWE to enjoy a wide range of physical activities.
Resumo:
Occipital lobe epilepsy (OLE) presents in childhood with different manifestations, age of onset and EEG features that form distinct syndromes. The ictal clinical symptoms are difficult to correlate with onset in particular areas in the occipital lobes, and the EEG recordings have not been able to overcome this limitation. The mapping of epileptogenic cortical regions in OLE remains therefore an important goal in our understanding of these syndromes.