2 resultados para Disturbance amplitude


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução: A pressão intra-craniana (PIC) tem sido descrita como estando envolvida no glaucoma primário de ângulo aberto (GPAA). A sua avaliação está contudo limitada pela necessidade de métodos invasivos, como a punção lombar. A ecografia ocular permite uma avaliação indirecta da PIC através da medição do diâmetro da bainha do nervo óptico (NO). Desconhece-se se esta nova variável tem capacidade de modular factores de risco normalmente investigados em doentes com GPAA. Objectivo: Avaliar o impacto do diâmetro da bainha do NO na pressão intra-ocular (PIO) e na amplitude de pulso ocular (OPA) de doentes com GPAA. Métodos: Quinze doentes com GPAA foram submetidos a medição da PIO por tonometria de contorno dinâmico, avaliação topográfica do disco óptico e ecografia ocular modo B com sonda doppler. Apenas o olho com maior dano glaucomatoso foi seleccionado por doente. Resultados: A média do diâmetro da bainha do NO foi de 5,6±0,67mm, a PIO média de 17,8±2,2mmHg e a OPA de 3,1±1,7mmHg. O diâmetro da bainha do NO correlacionou-se negativamente a OPA (r=-0.54, p=0.05), não tendo influenciado a PIO (r=-0,25, p=0,41). Da avaliação hemodinâmica, apenas o índice de resistência da artéria central da retina (CRA) foi influenciado pelo diâmetro da bainha do NO (r=-0.52, p=0.04). Conclusão: O diâmetro da bainha do NO correlaciona-se negativamente com a OPA. Este efeito poderá ser explicado pela alteração da resistência vascular da artéria que atravessa este espaço subaracnoideu, a CRA. O estudo da região retrobulbar e do balanço entre as pressões aí exercidas é assim um campo cuja importância será crescente na avaliação do doente com GPAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine the correlation between ocular blood flow velocities and ocular pulse amplitude (OPA) in glaucoma patients using colour Doppler imaging (CDI) waveform analysis. METHOD: A prospective, observer-masked, case-control study was performed. OPA and blood flow variables from central retinal artery and vein (CRA, CRV), nasal and temporal short posterior ciliary arteries (NPCA, TPCA) and ophthalmic artery (OA) were obtained through dynamic contour tonometry and CDI, respectively. Univariate and multiple regression analyses were performed to explore the correlations between OPA and retrobulbar CDI waveform and systemic cardiovascular parameters (blood pressure, blood pressure amplitude, mean ocular perfusion pressure and peripheral pulse). RESULTS: One hundred and ninety-two patients were included [healthy controls: 55; primary open-angle glaucoma (POAG): 74; normal-tension glaucoma (NTG): 63]. OPA was statistically different between groups (Healthy: 3.17 ± 1.2 mmHg; NTG: 2.58 ± 1.2 mmHg; POAG: 2.60 ± 1.1 mmHg; p < 0.01), but not between the glaucoma groups (p = 0.60). Multiple regression models to explain OPA variance were made for each cohort (healthy: p < 0.001, r = 0.605; NTG: p = 0.003, r = 0.372; POAG: p < 0.001, r = 0.412). OPA was independently associated with retrobulbar CDI parameters in the healthy subjects and POAG patients (healthy CRV resistance index: β = 3.37, CI: 0.16-6.59; healthy NPCA mean systolic/diastolic velocity ratio: β = 1.34, CI: 0.52-2.15; POAG TPCA mean systolic velocity: β = 0.14, CI 0.05-0.23). OPA in the NTG group was associated with diastolic blood pressure and pulse rate (β = -0.04, CI: -0.06 to -0.01; β = -0.04, CI: -0.06 to -0.001, respectively). CONCLUSIONS: Vascular-related models provide a better explanation to OPA variance in healthy individuals than in glaucoma patients. The variables that influence OPA seem to be different in healthy, POAG and NTG patients.