1 resultado para Co-occurrence Relation
Filtro por publicador
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Aston University Research Archive (20)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (195)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (2)
- Bioline International (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (21)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (21)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (8)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (11)
- Dalarna University College Electronic Archive (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (7)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (5)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (17)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (31)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (8)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (40)
- Repositório da Produção Científica e Intelectual da Unicamp (17)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (7)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (3)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (82)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (20)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (68)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (22)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (4)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade do Minho (2)
- Universidade dos Açores - Portugal (5)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (33)
- Université de Montréal, Canada (30)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (39)
- University of Queensland eSpace - Australia (113)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.