4 resultados para CMOS synchronous circuits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on a case of gastric antral vascular ectasia (watermelon stomach) that was associated with hemorrhagic pericarditis, small cell lung carcinoma with mediastinal lymph node metastases and a synchronous squamous cell carcinoma of the base of the tongue, the authors made a review of the clinical, endoscopic and histopathological aspects of this type of gastropathy, and its association with other diseases, and of the results of its endoscopic therapy. The causes of hemorrhagic pericarditis are considered, emphasizing the necessity to know if the effusion has a malignant etiology. To the best of our knowledge the association of watermelon stomach to small cell lung carcinoma and squamous cell carcinoma of the base of the tongue has not yet been described. Extensive metastases to mediastal lymph nodes are common to small cell lung carcinoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slowed atrial conduction may contribute to reentry circuits and vulnerability for atrial fibrillation (AF). The autonomic nervous system (ANS) has modulating effects on electrophysiological properties. However, complex interactions of the ANS with the arrhythmogenic substrate make it difficult to understand the mechanisms underlying induction and maintenance of AF. AIM: To determine the effect of acute ANS modulation in atrial activation times in patients (P) with paroxysmal AF (PAF). METHODS AND RESULTS: 16P (9 men; 59±14years) with PAF, who underwent electrophysiological study before AF ablation, and 15P (7 men; 58±11years) with atrioventricular nodal reentry tachycardia, without documentation or induction of AF (control group). Each group included 7P with arterial hypertension but without underlying structural heart disease. The study was performed while off drugs. Multipolar catheters were placed at the high right atrium (HRA), right atrial appendage (RAA), coronary sinus (CS) and His bundle area (His). At baseline and with HRA pacing (600ms, shortest propagated S2) we measured: i) intra-atrial conduction time (IACT, between RAA and atrial deflection in the distal His), ii) inter-atrial conduction time (interACT, between RAA and distal CS), iii) left atrial activation time (LAAT, between atrial deflection in the distal His and distal CS), iv) bipolar electrogram duration at four atrial sites (RAA, His, proximal and distal CS). In the PAF group, measurements were also determined during handgrip and carotid sinus massage (CSM), and after pharmacological blockade of the ANS (ANSB). AF was induced by HRA programmed stimulation in 56% (self-limited - 6; sustained - 3), 68.8% (self-limited - 6; sustained - 5), and 50% (self-limited - 5; sustained - 3) of the P, in basal, during ANS maneuvers, and after ANSB, respectively (p=NS). IACT, interACT and LAAT significantly lengthened during HRA pacing in both groups (600ms, S2). P with PAF have longer IACT (p<0.05), a higher increase in both IACT, interACT (p<0.01) and electrograms duration (p<0.05) with S2, and more fragmented activity, compared with the control group. Atrial conduction times and electrograms duration were not significantly changed during ANS stimulation. Nevertheless, ANS maneuvers increased heterogeneity of the local electrograms duration. Also, P with sustained AF showed longer interACT and LAAT during CSM. CONCLUSION: Atrial conduction times, electrograms duration and fractionated activity are increased in PAF, suggesting a role for conduction delays in the arrhythmogenic substrate. Acute vagal stimulation is associated with prolonged interACT and LAAT in P with inducible sustained AF and ANS modulation may influence the heterogeneity of atrial electrograms duration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Involuntary rhythmic leg movements in childhood is an uncommon condition, the generators of which remain unknown. We report on a male 3 years of age with distinct features providing important clues concerning the location of one of these generators. At the age of 7 months, the previously healthy young male started with low frequency, rhythmic, and continuous (both during wakefulness and sleep) flexion/extension movements of the lower limbs. Movements interfered significantly with gait acquisition, and, despite normal cognitive development, he was able to walk only at age 2 years, 4 months. The neurologic examination revealed the absence of automatic stepping in the neonatal period, but was otherwise normal. A polygraphic electroencephalogram/electromyogram EEG/EMG) recording, at the age of 2 years, 9 months, revealed rhythmic and synchronous legs with EMG activity at 0.5 Hz. A more complete polygraphic recording at the age of 3 years, 10 months, showed a lower frequency (0.35 Hz) for the movements, which were time-locked with the respiratory cycle. Magnetic resonance imaging (MRI) of the brain revealed an increased T2 signal in the upper medulla-lower pons regions. The generator of the rhythmic legs movements is postulated to be the respiratory center, connecting with the reticulospinal projecting neurons through an aberrant pathway.