2 resultados para Bronze bug


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Congenital muscular dystrophy type 1A is caused by mutations in the LAMA2 gene, which encodes the a2-chain of laminin. We report two patients with partial laminin-a2 deficiency and atypical phenotypes, one with almost exclusive central nervous system involvement (cognitive impairment and refractory epilepsy) and the second with marked cardiac dysfunction, rigid spine syndrome and limb-girdle weakness. Patients underwent clinical, histopathological, imaging and genetic studies. Both cases have two heterozygous LAMA2 variants sharing a potentially pathogenic missense mutation c.2461A>C (p.Thr821Pro) located in exon 18. Brain MRI was instrumental for the diagnosis, since muscular examination and motor achievements were normal in the first patient and there was a severe cardiac involvement in the second. The clinical phenotype of the patients is markedly different which could in part be explained by the different combination of mutations types (two missense versus a missense and a truncating mutation).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Congenital muscular dystrophy type 1A (MDC1A) is caused by mutations in the LAMA2 gene encoding laminin-alpha2. We describe the molecular study of 26 patients with clinical presentation, magnetic resonance imaging and/or laminin-alpha2 expression in muscle, compatible with MDC1A. The combination of full genomic sequencing and complementary DNA analysis led to the particularly high mutation detection rate of 96% (50/52 disease alleles). Besides 22 undocumented polymorphisms, 18 different mutations were identified in the course of this work, 14 of which were novel. In particular, we describe the first fully characterized gross deletion in the LAMA2 gene, encompassing exon 56 (c.7750-1713_7899-2153del), detected in 31% of the patients. The only two missense mutations detected were found in heterozygosity with nonsense or truncating mutations in the two patients with the milder clinical presentation and a partial reduction in muscle laminin-alpha2. Our results corroborate the previous few genotype/phenotype correlations in MDC1A and illustrate the importance of screening for gross rearrangements in the LAMA2 gene, which may be underestimated in the literature.