2 resultados para Area and perimeter
Resumo:
Objective: To compare measurements of the upper arm cross-sectional areas (total arm area,arm muscle area, and arm fat area of healthy neonates) as calculated using anthropometry with the values obtained by ultrasonography. Materials and methods: This study was performed on 60 consecutively born healthy neonates: gestational age (mean6SD) 39.661.2 weeks, birth weight 3287.16307.7 g, 27 males (45%) and 33 females (55%). Mid-arm circumference and tricipital skinfold thickness measurements were taken on the left upper mid-arm according to the conventional anthropometric method to calculate total arm area, arm muscle area and arm fat area. The ultrasound evaluation was performed at the same arm location using a Toshiba sonolayer SSA-250AÒ, which allows the calculation of the total arm area, arm muscle area and arm fat area by the number of pixels enclosed in the plotted areas. Statistical analysis: whenever appropriate, parametric and non-parametric tests were used in order to compare measurements of paired samples and of groups of samples. Results: No significant differences between males and females were found in any evaluated measurements, estimated either by anthropometry or by ultrasound. Also the median of total arm area did not differ significantly with either method (P50.337). Although there is evidence of concordance of the total arm area measurements (r50.68, 95% CI: 0.55–0.77) the two methods of measurement differed for arm muscle area and arm fat area. The estimated median of measurements by ultrasound for arm muscle area were significantly lower than those estimated by the anthropometric method, which differed by as much as 111% (P,0.001). The estimated median ultrasound measurement of the arm fat was higher than the anthropometric arm fat area by as much as 31% (P,0.001). Conclusion: Compared with ultrasound measurements using skinfold measurements and mid-arm circumference without further correction may lead to overestimation of the cross-sectional area of muscle and underestimation of the cross-sectional fat area. The correlation between the two methods could be interpreted as an indication for further search of correction factors in the equations.
Resumo:
BACKGROUND: To optimize the noninvasive evaluation of bone remodeling, we evaluated, besides routine serum markers, serum levels of several cytokines involved in bone turnover. METHODS: A transiliac bone biopsy was performed in 47 hemodialysis patients. Serum levels of intact parathyroid hormone (iPTH; 1-84), total alkaline phosphatases (tAP), calcium, phosphate and aluminum (Al) were measured. Circulating levels of interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1Ra) and soluble IL-6 receptor (sIL-6r) were determined using ELISA. Circulating IL-1beta, IL-6, IL-8, IL-10, IL-12p70 and tumor necrosis factor-alpha (TNF-alpha) were simultaneously quantified by flow cytometric immunoassay. RESULTS: Patients with low/normal bone formation rate (L/N-BFR) had significantly lower serum iPTH (p<0.001) and tAP (p<0.008) and significantly higher Al (p<0.025) than patients with high BFR. Serum calcium and phosphorus, however, did not differ (p=NS). An iPTH >300 pg/mL in association with tAP >120 U/L showed low sensitivity (58.8%) and low negative predictive value (44.0%) for the diagnosis of high BFR disease. An iPTH <300 pg/mL in association with normal or low tAP, <120 U/L, was associated with low sensitivity (66.7%) but high specificity (97.1%) for the diagnosis of L/N-BFR. Serum IL-1, IL-6, IL-12p70 and TNF-alpha were positively correlated with BFR, serum IL1-Ra and IL-10 with bone area, and by multiple regression analysis, tAP and IL-6 were independently predictive of BFR. CONCLUSIONS: Significant associations were found between several circulating cytokines and bone histomorphometry in dialysis patients. The usefulness of these determinations in the noninvasive evaluation of bone remodeling needs to be confirmed in larger dialysis populations.