2 resultados para All-sky Survey


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors analyzed 704 transthoracic echocardiographic (TTE) examinations, performed routinely to all admitted patients to a general 16-bed Intensive Care Unit (ICU) during an 18-month period. Data acquisition and prevalence of abnormalities of cardiac structures and function were assessed, as well as the new, previously unknown severe diagnoses. A TTE was performed within the first 24 h of admission on 704 consecutive patients, with a mean age of 61.5+/-17.5 years, ICU stay of 10.6+/-17.1 days, APACHE II 22.6+/-8.9, and SAPS II 52.7+/-20.4. In four patients, TTE could not be performed. Left ventricular (LV) dimensions were quantified in 689 (97.8%) patients, and LV function in 670 (95.2%) patients. Cardiac output (CO) was determined in 610 (86.7%), and mitral E/A in 399 (85.9% of patients in sinus rhythm). Echocardiographic abnormalities were detected in 234 (33%) patients, the most common being left atrial (LA) enlargement (n=163), and LV dysfunction (n=132). Patients with these alterations were older (66+/-16.5 vs 58.1+/-17.4, p<0.001), presented a higher APACHE II score (24.4+/-8.7 vs 21.1+/-8.9, p<0.001), and had a higher mortality rate (40.1% vs 25.4%, p<0.001). Severe, previously unknown echocardiographic diagnoses were detected in 53 (7.5%) patients; the most frequent condition was severe LV dysfunction. Through a multivariate logistic regression analysis, it was determined that mortality was affected by tricuspid regurgitation (p=0.016, CI 1.007-1.016) and ICU stay (p<0.001, CI 1-1.019). We conclude that TTE can detect most cardiac structures in a general ICU. One-third of the patients studied presented cardiac structural or functional alterations and 7.5% severe previously unknown diagnoses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leber congenital amaurosis (LCA) is the earliest and most severe form of all inherited retinal dystrophies, responsible for congenital blindness. Disease-associated mutations have been hitherto reported in seven genes. These genes are all expressed preferentially in the photoreceptor cells or the retinal pigment epithelium but they are involved in strikingly different physiologic pathways resulting in an unforeseeable physiopathologic variety. This wide genetic and physiologic heterogeneity that could largely increase in the coming years, hinders the molecular diagnosis in LCA patients. The genotyping is, however, required to establish genetically defined subgroups of patients ready for therapy. Here, we report a comprehensive mutational analysis of the all known genes in 179 unrelated LCA patients, including 52 familial and 127 sporadic (27/127 consanguineous) cases. Mutations were identified in 47.5% patients. GUCY2D appeared to account for most LCA cases of our series (21.2%), followed by CRB1 (10%), RPE65 (6.1%), RPGRIP1 (4.5%), AIPL1 (3.4%), TULP1 (1.7%), and CRX (0.6%). The clinical history of all patients with mutations was carefully revisited to search for phenotype variations. Sound genotype-phenotype correlations were found that allowed us to divide patients into two main groups. The first one includes patients whose symptoms fit the traditional definition of LCA, i.e., congenital or very early cone-rod dystrophy, while the second group gathers patients affected with severe yet progressive rod-cone dystrophy. Besides, objective ophthalmologic data allowed us to subdivide each group into two subtypes. Based on these findings, we have drawn decisional flowcharts directing the molecular analysis of LCA genes in a given case. These flowcharts will hopefully lighten the heavy task of genotyping new patients but only if one has access to the most precise clinical history since birth.