2 resultados para ALLELIC RICHNESS
Resumo:
Allelic differences in gene promoter or codifying regions have been described to affect regulation of gene expression, consequently increasing or decreasing cytokine production and signal transduction responses to a given stimulus. This observation has been reported for interleukin (IL)-10 (-1082 A/G; -819/-592 CT/CA), transforming growth factor (TGF)-beta (codon 10 C/T, codon 25 G/C), tumor necrosis factor (TNF)-alpha (-308 G/A), TNF-beta (+252 A/G), interferon (IFN)-gamma (+874 T/A), IL-6 (-174 G/C), and IL-4R alpha (+1902 G/A). To evaluate the influence of these cytokine genotypes on the development of acute or chronic rejection, we correlated the genotypes of both kidney graft recipients and cadaver donors with the clinical outcome. Kidney recipients had 5 years follow-up, at least 2 HLA-DRB compatibilities, and a maximum of 25% anti-HLA pretransplantation sensitization. The clinical outcomes were grouped as follows: stable functioning graft (NR, n = 35); acute rejection episodes (AR, n = 31); and chronic rejection (CR, n = 31). The cytokine genotype polymorphisms were defined using PCR-SSP typing. A statistical analysis showed a significant prevalence of recipient IL-10 -819/-592 genotype among CR individuals; whereas among donors, the TGF-beta codon 10 CT genotype was significantly associated with the AR cohort and the IL-6 -174 CC genotype with CR. Other albeit not significant observations included a strong predisposition of recipient TGF-beta codon 10 CT genotype with CR, and TNF-beta 252 AA with AR. A low frequency of TNF-alpha -308 AA genotype also was observed among recipients and donors who showed poor allograft outcomes.
Resumo:
Familial renal glucosuria (FRG) is a rare co -dominantly inherited benign phenotype characterized by the presence of glucose in the urine. It is caused by mutations in the SLC5A2 gene that encodes SGLT2, a Na+ -glucose co -transporter. The purpose of our current work was twofold: to characterize the molecular and phenotype findings of an FRG cohort and, in addition, to detail the SGLT2 expression in the adult human kidney. The phenotype of FRG pedigrees was evaluated using direct sequencing for the identification of sequence variations in the SLC5A2 gene. The expression of SGLT2 in the adult human kidney was studied by immunofluorescence on kidney biopsy specimens. In the absence of renal biopsies from FRG individuals, and in order to evaluate the potential disruption of SGLT2 expression in a glucosuric nephropathy, we have selected cases of nucleoside analogues induced proximal tubular toxicity. We identified six novel SLC5A2 mutations in six FRG pedigrees and described the occurrence of hyperuricosuria associated with hypouricaemia in the two probands with the most severe phenotypes. Histopathological studies proved that SGLT2 is localized to the brush -border of the proximal tubular epithelia cell and that this normal pattern was found to be disrupted in cases of nucleoside analogues induced tubulopathy. We present six novel SLC5A2 mutations, further contributing to the allelic heterogeneity in FRG, and identified hyperuricosuria and hypouricaemia as part of the FRG phenotype. SGLT2 is localized to the brush -border of the proximal tubule in the adult human normal kidney, and aberrant expression of the co -transporter may underlie the glucosuria seen with the use of nucleoside analogues.