3 resultados para 2ND MESSENGER SYSTEM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autonomic nervous system (ANS) is known to be an important modulator in the pathogenesis of paroxysmal atrial fibrillation (PAF). Changes in ANS control of heart rate variability (HRV) occur during orthostatism to maintain cardiovascular homeostasis. Wavelet transform has emerged as a useful tool that provides time-frequency decomposition of the signal under investigation, enabling intermittent components of transient phenomena to be analyzed. AIM: To study HRV during head-up tilt (HUT) with wavelet transform analysis in PAF patients and healthy individuals (normals). METHODS: Twenty-one patients with PAF (8 men; age 58 +/- 14 yrs) were examined and compared with 21 normals (7 men, age 48 +/- 12 yrs). After a supine resting period, all subjects underwent passive HUT (60 degrees) while in sinus rhythm. Continuous monitoring of ECG and blood pressure was carried out (Task Force Monitor, CNSystems). Acute changes in RR-intervals were assessed by wavelet analysis and low-frequency power (LF: 0.04-0.15 Hz), high-frequency power (HF: 0.15-0.60 Hz) and LF/HF (sympathovagal) were calculated for 1) the last 2 min of the supine period; 2) the 15 sec of tilting movement (TM); and 3) the 1st (TT1) and 2nd (TT2) min of HUT. Data are expressed as means +/- SEM. RESULTS: Baseline and HUT RR-intervals were similar for the two groups. Supine basal blood pressure was also similar for the two groups, with a sustained increase in PAF patients, and a decrease followed by an increase and then recovery in normals. Basal LF, HF and LF/ HF values in PAF patients were 632 +/- 162 ms2, 534 +/- 231 ms2 and 1.95 +/- 0.39 respectively, and 1058 +/- 223 ms2, 789 +/- 244 ms2 and 2.4 +/- 0.36 respectively in normals (p = NS). During TM, LF, HF and LF/HF values for PAF patients were 747 +/- 277 ms2, 387 +/- 94 ms2 and 2.9 +/- 0.6 respectively, and 1316 +/- 315 ms2, 698 +/- 148 ms2 and 2.8 +/- 0.6 respectively in normals (p < 0.05 for LF and HF). During TF1, LF, HF and LF/ HF values for PAF patients were 1243 +/- 432 ms2, 302 +/- 88 ms2 and 7.7 +/- 2.4 respectively, and 1992 +/- 398 ms2, 333 +/- 76 ms2 and 7.8 +/- 0.98 respectively for normals (p < 0.05 for LF). During TF2, LF, HF and LF/HF values for PAF patients were 871 +/- 256 ms2, 242 +/- 51 ms2 and 4.7 +/- 0.9 respectively, and 1263 +/- 335 ms2, 317 +/- 108 ms2 and 8.6 +/- 0.68 respectively for normals (p < 0.05 for LF/HF). The dynamic profile of HRV showed that LF and HF values in PAF patients did not change significantly during TM or TT2, and LF/HF did not change during TM but increased in TT1 and TT2. CONCLUSION: Patients with PAF present alterations in HRV during orthostatism, with decreased LF and HF power during TM, without significant variations during the first minutes of HUT. These findings suggest that wavelet transform analysis may provide new insights when assessing autonomic heart regulation and highlight the presence of ANS disturbances in PAF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Mortality after ICU discharge accounts for approx. 20-30% of deaths. We examined whether post-ICU discharge mortality is associated with the presence and severity of organ dysfunction/failure just before ICU discharge. PATIENTS AND METHODS: The study used the database of the EURICUS-II study, with a total of 4,621 patients, including 2,958 discharged alive to the general wards (post-ICU mortality 8.6%). Over a 4-month period we collected clinical and demographic characteristics, including the Simplified Acute Physiology Score (SAPS II), Nine Equivalents of Nursing Manpower Use Score, and Sequential Organ Failure Assessment (SOFA) score. RESULTS: Those who died in the hospital after ICU discharge had a higher SAPS II score, were more frequently nonoperative, admitted from the ward, and had stayed longer in the ICU. Their degree of organ dysfunction/failure was higher (admission, maximum, and delta SOFA scores). They required more nursing workload resources while in the ICU. Both the amount of organ dysfunction/failure (especially cardiovascular, neurological, renal, and respiratory) and the amount of nursing workload that they required on the day before discharge were higher. The presence of residual CNS and renal dysfunction/failure were especially prognostic factors at ICU discharge. Multivariate analysis showed only predischarge organ dysfunction/failure to be important; thus the increased use of nursing workload resources before discharge probably reflects only the underlying organ dysfunction/failure. CONCLUSIONS: It is better to delay the discharge of a patient with organ dysfunction/failure from the ICU, unless adequate monitoring and therapeutic resources are available in the ward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: To share information on the organization of perinatal care in Portugal. METHODS: Data were derived from the Programme of the National Committee for Mother and Child Health 1989, National Institute for Statistics, and Eurostat. RESULTS: In 1989, perinatal care in Portugal was reformed: the closure was proposed of maternity units with less than 1500 deliveries per year; hospitals were classified as level I (no deliveries), II (low-risk deliveries, intermediate care units) or III (high-risk deliveries, intensive care units), and functional coordinating units responsible for liaison between local health centres and hospitals were established. A nationwide system of neonatal transport began in 1987, and in 1990 postgraduate courses on neonatology were initiated. With this reform, in-hospital deliveries increased from 74% before the reform to 99% after. Maternal death rate decreased from 9.2/100,000 deliveries in 1989 to 5.3 in 2003 and, in the same period, the perinatal mortality rate decreased from 16.4 to 6.6/1000 (live births + stillborn with > or = 22 wk gestational age), the neonatal mortality rate decreased from 8.1 to 2.7/1000 live births, and the infant mortality rate from 12.2/1000 live births to 4/1000. CONCLUSION: Regionalization of perinatal care and neonatal transport are key factors for a successful perinatal health system.