15 resultados para sustainable urban design
Resumo:
In modern society, energy consumption and respect for the environment have become essential aspects of urban planning. The rising demand for alternative sources of energy, coupled with the decline in the construction sector and material usage, gives the idea that the thinking on modern cities, where attention is given to reduced energy consumption, savings, waste recycling and respect for the surrounding environment, is being put into practice. If we examine development of the city over recent centuries, by means of the theories of the most famous and influential urban planners, it is possible to identify the major problems caused by this type of planning. For this reason, in recent urban planning the use of systems of indicators that evaluate and certify land environmentally and energetically guides the master plan toward a more efficient city model. In addition the indicators are targeted on key factors determined by the commissioner or the opportunities the territory itself provides. Due the complexity of the environmental mechanics, the process of design and urban planning has become a challenging issue. The introduction of the indicators system has made it possible to register the life of the process, with a spiral route that allows the design itself to be refined. The aim of this study, built around the creation of a system of urban sustainability indicators that will evaluate highly eco-friendly cities, is to develop a certification system for cities or portions of them. The system will be upgradeable and objective, will employ real data and will be concerned with energy production and consumption.
Resumo:
Dissertação apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Ecologia Humana e Problemas Sociais Contemporâneos
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
This article outlines the initial draft of a PhD project which investigates refurbishment or rehabilitation projects in two German cities. The study focuses on obstacles, restraints and deficits as well as factors of success, which can be identified during the execution of the refurbishments. Moreover the study examines the process of the refurbishment itself, the general conditions under which the refurbishments are being executed as well as the implementation of sustainability criteria. First the article gives a short summary of the theoretical considerations of the study. In this respect it shortly outlines the global conditions of urban development and conducting challenges for cities in the 21st century, guiding principles of a sustainable urban development as well as goals of sustainable refurbishments. Finally the article shortly describes the case studies and presents the initial results of the empirical work.
Resumo:
The sustainable urban mobility plan is the framework of planning and organisation of mobility system. It is a strategic and operational plan with consequences in the planning and organisation of territorial and transport systems. When it’s defining the principles and the objectives of sustainable development and when it’s working in the scenarios of modal shift more favourable to the alternative modes than the car, the planning and the organisation of territory will be integrated on the political of reduction of road circulation volumes, in the reduction of GEE, waste of space and time, in the improvement of quality of urban environment. The Urbanism Agencies and the Urban Transport Authorities will get their selves in the urban mobility plan, in territory scenarios development, mobility and transports, with the objective to understand the sustainable politics in the accessibilities which are available by the transportation bill. In Portugal, although the authorities are not yet working, the law (1/2009) recently approved in last December and published at the beginning of the year, they have the sustainable urban mobility plans forward in this strategy.
Resumo:
A globalização representa um marco nas transformações das cidades e da vida dos seus urbanitas, caraterizada pelo grande avanço tecnológico, transportes e comunicação. A dinâmica da população, a irracionalidade do consumo dos recursos, a degradação do ambiente global revela cada vez mais o alcance de níveis ambientais críticos com repercussões irreversíveis nos ecossistemas globais. Analogamente a este processo desenfreado e sem precedentes, surgem as primeiras preocupações face à iminência de um cenário assolador: o alcance dos limites ambientais. É neste contexto que novas reflexões sobre a cidade e o ambiente urbano vão surgindo, um pouco por todo o mundo, traçando estratégias inovadoras que respondam a este desafio ambiental, assegurando as necessidades das populações sem comprometer o futuro das vindouras. Neste sentido, o desenvolvimento do presente trabalho procura demonstrar como a cidade dual, “geradora” de insustentabilidade poderá contribuir para a sustentabilidade ambiental.
Resumo:
Sustainable Construction, Materials and Practice, p. 426-432
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
The rapid growth of big cities has been noticed since 1950s when the majority of world population turned to live in urban areas rather than villages, seeking better job opportunities and higher quality of services and lifestyle circumstances. This demographic transition from rural to urban is expected to have a continuous increase. Governments, especially in less developed countries, are going to face more challenges in different sectors, raising the essence of understanding the spatial pattern of the growth for an effective urban planning. The study aimed to detect, analyse and model the urban growth in Greater Cairo Region (GCR) as one of the fast growing mega cities in the world using remote sensing data. Knowing the current and estimated urbanization situation in GCR will help decision makers in Egypt to adjust their plans and develop new ones. These plans should focus on resources reallocation to overcome the problems arising in the future and to achieve a sustainable development of urban areas, especially after the high percentage of illegal settlements which took place in the last decades. The study focused on a period of 30 years; from 1984 to 2014, and the major transitions to urban were modelled to predict the future scenarios in 2025. Three satellite images of different time stamps (1984, 2003 and 2014) were classified using Support Vector Machines (SVM) classifier, then the land cover changes were detected by applying a high level mapping technique. Later the results were analyzed for higher accurate estimations of the urban growth in the future in 2025 using Land Change Modeler (LCM) embedded in IDRISI software. Moreover, the spatial and temporal urban growth patterns were analyzed using statistical metrics developed in FRAGSTATS software. The study resulted in an overall classification accuracy of 96%, 97.3% and 96.3% for 1984, 2003 and 2014’s map, respectively. Between 1984 and 2003, 19 179 hectares of vegetation and 21 417 hectares of desert changed to urban, while from 2003 to 2014, the transitions to urban from both land cover classes were found to be 16 486 and 31 045 hectares, respectively. The model results indicated that 14% of the vegetation and 4% of the desert in 2014 will turn into urban in 2025, representing 16 512 and 24 687 hectares, respectively.
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.
Resumo:
In this Work Project, it will be assessed how Sintra’s sustainability is affected by the consequences of the visitor flow on its urban historical center. Two research questions will support this case study: What is the main problem affecting Sintra as a tourism destination? How sustainable will Sintra be in the next 10-15 years? The main findings suggest Sintra faces an intense seasonal pressure on its historical city center and its sustainability might be seriously affected in the near future, whereby three domains of the destination deserve a serious strategy reassessment: promotion, management, and supply.
Resumo:
In recent years it has been noticed the progressive disappearance of vernacular sustainable building technologies all over the world mainly due to a strong urban rehabilitation process with modern technologies not compatible with ancient knowledge. Simultaneously new dwellings are needed all over the world and in this sense it was decided to study an ecological and cost-controlled building technology of monolithic walls that can combine the use of low carbon footprint materials, such as earth, fibres and lime using an invasive species: giant reed cane (Arundo Donax). This paper explains the development of this building technology through testing diverse prototypes.
Resumo:
Urban mobility is one of the main challenges facing urban areas due to the growing population and to traffic congestion, resulting in environmental pressures. The pathway to urban sustainable mobility involves strengthening of intermodal mobility. The integrated use of different transport modes is getting more and more important and intermodality has been mentioned as a way for public transport compete with private cars. The aim of the current dissertation is to define a set of strategies to improve urban mobility in Lisbon and by consequence reduce the environmental impacts of transports. In order to do that several intermodal practices over Europe were analysed and the transport systems of Brussels and Lisbon were studied and compared, giving special attention to intermodal systems. In the case study was gathered data from both cities in the field, by using and observing the different transport modes, and two surveys were done to the cities users. As concluded by the study, Brussels and Lisbon present significant differences. In Brussels the measures to promote intermodality are evident, while in Lisbon a lot still needs to be done. It also made clear the necessity for improvements in Lisbon’s public transports to a more intermodal passenger transport system, through integration of different transport modes and better information and ticketing system. Some of the points requiring developments are: interchanges’ waiting areas; integration of bicycle in public transport; information about correspondences with other transport modes; real-time information to passengers pre-trip and on-trip, especially in buses and trams. After the identification of the best practices in Brussels and the weaknesses in Lisbon the possibility of applying some of the practices in Brussels to Lisbon was evaluated. Brussels demonstrated to be a good example of intermodality and for that reason some of the recommendations to improve intermodal mobility in Lisbon can follow the practices in place in Brussels.