9 resultados para staphylococcal toxins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation for obtaining the Master degree in Membrane Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sociedade Polis Litoral Ria Formosa,Projects Quasus and Project Toxigest financed by PROMAR (2007-2013)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PLos One, 4(11): ARTe7722

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUMO:Staphylococcus aureus é um dos principais agentes patogénicos humanos, sendo frequentemente associado a infecções nosocomiais e infecções na comunidade. A prevalência de S. aureus resistentes à meticilina (MRSA) em hospitais portugueses é uma das mais elevadas da Europa e tem sido caracterizada extensivamente; contrariamente, a prevalência e epidemiologia de MRSA na comunidade em Portugal não tem sido devidamente seguida. Com o objectivo de compreender as causas possíveis do aumento na frequência de MRSA num dos maiores hospitais centrais portugueses (HSM) ao longo de 17 anos, isolados de MRSA recolhidos em 1993 (n=54) e 2010 (n=180) de pus, sangue e urina foram analisados por PFGE, MLST, tipagem do spa e tipagem de SCCmec. Os resultados mostraram que ocorreu uma mudança global nos tipos clonais predominantes, onde o clone ST22-IVh substituiu os clones, ST239-IIIvar e ST247-I, representando mais de 70% da população actual. Além disso, entre 1993 e 2010 verificou-se um aumento na diversidade genética dos tipos clonais de MRSA. Para determinar a frequência e a natureza clonal de MRSA e S. aureus sensíveis à meticilina (MSSA) isolados de infecções de pele e tecidos moles (SSTI) em pessoas que frequentam centros de saúde em Portugal, 73 amostras foram recolhidas em nove centros de saúde (Rede Médicos Sentinela). Isolou-se um total de 40 S. aureus (55%), dos quais 17,5% eram MRSA. Os isolados de MRSA pertenciam aos clones ST22-IVh (n=4), ST5-IVc (n=2) e ST105-II (n=1), que foram descritos neste estudo como sendo clones de origem hospitalar. Os nossos resultados sugerem que o aumento da frequência de MRSA no HSM pode estar associado à emergência de um clone de MRSA com maior capacidade epidémica. Além disso, verificámos que a principal causa de SSTI em pessoas que frequentam centros de saúde em Portugal são MRSA de origem hospitalar e não MRSA associados à comunidade.------ABSTRACT: Staphylococcus aureus is one of the most important human pathogens, being a major cause of infections worldwide both in the hospital and in the community. In Portugal, the prevalence of methicillin resistant S. aureus (MRSA) in hospitals is one of the highest in Europe and has been characterized extensively; contrarily the prevalence and epidemiology of MRSA in the community has not been followed in a meaningful way. To understand the epidemiological events that could explain a steep increase in MRSA frequency in a major Portuguese central hospital (HSM) within a 17 year period, two MRSA collections recovered in 1993 (n=54) and 2010 (n=180) from pus, blood and urine were analyzed by PFGE, MLST, spa and SCCmec typing. The results showed that a major clonal shift occurred, wherein ST22-IVh clone has replaced the previous ST239-IIIvar and ST247-I clones and accounts for more than 70% of the present population. Moreover, an increase in genetic diversity of MRSA clonal types was observed between the two study periods. With the aim of determining the frequency and clonal nature of MRSA and methicillin-susceptible S. aureus (MSSA) causing skin and soft tissue infections (SSTI) in patients attending healthcare centers in Portugal, 73 samples were collected from nine healthcare centers (Medicos Sentinela Network). A total of 40 S. aureus were isolated, accounting for 55% of the SSTI, of which 17.5% were MRSA. MRSA isolates belonged to ST22-IVh (n=4), ST5-IVc (n=2) and ST105-II (n=1) that have also been described in the hospital in an equivalent period. Our results suggest that the increase in MRSA frequency in HSM may be associated to the emergence of a MRSA clone with higher epidemic potential. Moreover, we propose that the spillover of MRSA from the hospital rather than community-associated-MRSA was the main cause of SSTI in persons attending healthcare centers in Portugal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation to obtain a Master Degree in Molecular Genetics and Biomedicine

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methicillin-resistant Staphylococcus aureus (MRSA), a human pathogen confined to hospitals (HAMRSA) for over 30 years have been emerging worldwide in the last two decades as a leading cause of severe infections in healthy individuals in the community (CA-MRSA). Despite its clinical significance, in the beginning of our studies no information existed on the prevalence, and population structure of CA-MRSA in Portugal. Moreover, it remained to be clarified how CA-MRSA emerged in our country. In particular, it was not known if CA-MRSA emerged locally by acquisition of the staphylococcal cassette chromosome mec (SCCmec) by established methicillin-susceptible S. aureus (MSSA) in the community, if they were imported from abroad or have escaped from the hospital.(...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUMO: Clostridium difficile é presentemente a principal causa de doença gastrointestinal associada à utilização de antibióticos em adultos. C. difficile é uma bactéria Gram-positiva, obrigatoriamente anaeróbica, capaz de formar endósporos. Tem-se verificado um aumento dos casos de doença associada a C. difficile com sintomas mais severos, elevadas taxas de morbilidade, mortalidade e recorrência, em parte, devido à emergência de estirpes mais virulentas, mas também devido à má gestão do uso de antibióticos. C. difficile produz duas toxinas, TcdA e TcdB, que são os principais fatores de virulência e responsáveis pelos sintomas da doença. Estas são codificadas a partir do Locus de Patogenicidade (PaLoc) que codifica ainda para um regulador positivo, TcdR, uma holina, TcdE, e um regulador negativo, TcdC. Os esporos resistentes ao oxigénio são essenciais para a transmissão do organismo e recorrência da doença. A expressão dos genes do PaLoc ocorre em células vegetativas, no final da fase de crescimento exponencial, e em células em esporulação. Neste trabalho construímos dois mutantes de eliminação em fase dos genes tcdR e tcdE. Mostrámos que a auto-regulação do gene tcdR não é significativa. No entanto, tcdR é sempre necessário para a expressão dos genes presentes no PaLoc. Trabalho anterior mostrou que, com a exceção de tcdC, os demais genes do PaLoc são expressos no pré-esporo. Mostrámos aqui que TcdA é detectada à superfície do esporo maduro e que a eliminação do tcdE não influencia a acumulação de TcdA no meio de cultura ou em associação às células ou ao esporo. Estas observações têm consequências para o nosso entendimento do processo infecioso: sugeremque o esporo possa ser também um veículo para a entrega da toxina nos estágios iniciais da infecção, que TcdA possa ser libertada durante a germinação do esporo, e que o esporo possa utilizar o mesmo receptor reconhecido por TcdA para a ligação à mucosa do cólon.---------------------------ABSTRACT: Clostridium difficile is currently the major cause of antibiotic-associated gastrointestinal diseases in adults. This is a Gram-positive bacterium, endospore-forming and an obligate anaerobe that colonizes the gastrointestinal tract. Recent years have seen a rise in C. difficile associated disease (CDAD) cases, associated with more severe disease symptoms, higher rates of morbidity, mortality and recurrence, which were mostly caused due to the emergence of “hypervirulent” strains but also due to changing patterns of antibiotics use. C. difficile produces two potent toxins, TcdA and TcdB, which are the main virulence factors and the responsible for the disease symptoms. These are codified from a Pathogenicity Locus (PaLoc), composed also by the positive regulator, TcdR, the holin-like protein, TcdE, and a negative regulator, TcdC. Besides the toxins, the oxygen-resistant spores are also essential for transmission of the organism through diarrhea; moreover, spores can accumulate in the environment or in the host, which will cause disease recurrence. The expression of the PaLoc genes occurs in vegetative cells, at the end of the exponential growth phase, and in sporulating cells. In this work, we constructed two in-frame deletion mutants of tcdR and tcdE. We showed that the positive auto regulation of tcdR is not significant. However, tcdR is always necessary for the expression of the PaLoc genes. A previous work showed that, except tcdC, all the PaLoc genes are expressed in the forespore. Here, we detected TcdA at the spore surface. Furthermore, we showed that the in-frame deletion of tcdE does not affect the accumulation of TcdA in the culture medium or in association with cells or spores. This data was important for us to conclude about the infeccious process: it suggests that the spore may be the vehicle for the delivery of TcdA in early stages of infection, that TcdA may be released during spores germination and that this spore may use the same receptor recognized by TcdA to bind to the colonic mucosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcus aureus (S. aureus) is a major human pathogen that has acquired resistance to practically all classes of β-lactam antibiotics, being responsible of Multidrug resistant S. aureus (MRSA) associated infections both in healthcare (HA-MRSA) and community settings (CA-MRSA). The emergence of laboratory strains with high-resistance (VRSA) to the last resort antibiotic, vancomycin, is a warning of what is to come in clinical strains. Penicillin binding proteins (PBPs) target β-lactams and are responsible for catalyzing the last steps of synthesis of the main component of cell wall, peptidoglycan. As in Escherichia coli, it is suggested that S. aureus uses a multi-protein complex that carries out cell wall synthesis. In the presence of β-lactams, PBP2A and PBP2 perform a joint action to build the cell wall and allow cell survival. Likewise, PBP2 cooperates with PBP4 in cell wall cross-linking. However, an actual interaction between PBP2 and PBP4 and the location of such interaction has not yet been determined. Therefore, investigation of the existence of a PBP2-PBP4 interaction and its location(s) in vivo is of great interest, as it should provide new insights into the function of the cell wall synthesis machinery in S. aureus. The aim of this work was to develop Split-GFPP7 system to determine interactions between PBP2 and PBP4. GFPP7 was split in a strategic site and fused to proteins of interest. When each GFPP7 fragment, fused to proteins, was expressed alone in staphylococcal cells, no fluorescence was detectable. When GFPP7 fragments fused to different peptidoglycan synthesis (PBP2 and PBP4) or cell division (FtsZ and EzrA) proteins were co-expressed together, fluorescent fusions were localized to the septum. However, further analysis revealed that this positive result is mediated by GFPP7 self-association. We then interpret the results in light of such event and provide insights into ways of improving this system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a need to develop viable techniques for removal and recovery organic and inorganic compounds from environmental matrices, due to their ecotoxicity, regulatory obligations or potential supplies as secondary materials. In this dissertation, electro –removal and –recovery techniques were applied to five different contaminated environmental matrices aiming phosphorus (P) recovery and/or contaminants removal. In a first phase, the electrokinetic process (EK) was carried out in soils for (i) metalloids and (ii) organic contaminants (OCs) removal. In the case of As and Sb mine contaminated soil, the EK process was additionally coupled with phytotechnologies. In a second phase, the electrodialytic process (ED) was applied to wastes aiming P recovery and simultaneous removal of (iii) toxins from membrane concentrate, (iv) heavy metals from sewage sludge ash (SSA), and (v) OCs from sewage sludge (SS). EK enhanced phytoremediation showed to be viable for the remediation of soils contaminated with metalloids, as although remediation was low, it combines advantages of both technologies while allowing site management. EK also proved to be an effective remediation technology for the removal and degradation of emerging OCs from two types of soil. Aiming P recovery and contaminants removal, different ED cell set-ups were tested. For the membrane concentrates, the best P recovery was achieved in a three compartment (3c) cell, but the highest toxin removal was obtained in a two compartment (2c) cell, placing the matrix in the cathode end. In the case of SSA the best approach for simultaneous P recovery and heavy metals removal was to use a 2c-cell placing the matrix in the anode end. However, for simultaneous P recovery and OCs removal, SS should be placed in the cathode end, in a 2c-cell. Overall, the data support that the selection of the cell design should be done case-by-case.