20 resultados para spore-crystal toxicity
Resumo:
Superoxide reductase is a 14 kDa metalloprotein containing a catalytic nonhaem iron centre [Fe(His)4Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponema pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K3Fe(CN)6 belonged to space group P21 (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 A ° , = 106.9 ) and diffracted beyond 1.60 A ° resolution, while crystals grown in the presence of Na2IrCl6 belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 A ° , = 104.9 ) and diffracted beyond 1.55 A ° . A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator ( = 1.542 A ° ) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P21 data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.
Resumo:
Dissertation presented at Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa to obtain the Degree of Master in Chemical and Biochemical Engineering
Resumo:
Plos Genetics, 5(7): ARTe1000566
Resumo:
PLOS ONE, 4(8):ARTe6820
Resumo:
Dissertation for the Master Degree in Structural and Functional Biochemistry
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
J Biol Inorg Chem (2011) 16:51–61 DOI 10.1007/s00775-010-0700-8
Resumo:
J Biol Inorg Chem (2006) 11: 548–558 DOI 10.1007/s00775-006-0104-y
Resumo:
J. Am. Chem. Soc., 2004, 126 (28), pp 8614–8615 DOI: 10.1021/ja0490222
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology, Microbial Biology
Resumo:
Dissertação para obtenção do Grau de Doutor em Ambiente
Resumo:
Clostridium difficile is a gram positive, spore former, anaerobic bacterium that is able to cause infection and disease, with symptoms ranging from mild diarrhea to pseudomembranous colitis, toxic megacolon, sepsis and death. In the last decade new strains have emerged that caused outbreaks of increased disease severity and higher recurrence, morbidity and mortality rates, and C. difficile is now considered both a main nosocomial pathogen associated with antibiotic therapy as well as a major concern in the community.(...)
Resumo:
Sporulation in Bacillus subtilis culminates with the formation of a dormant endospore. The endospore (or spore) is one of the most resilient cell types known and can remain viable in the environment for extended periods of time. Contributing to the spore’s resistance and its ability to interact with and monitor its immediate environment is the coat, the outermost layer of B. subtilis spores. The coat is composed by over 70 different proteins, which are produced at different stages in sporulation and orderly assembled around the developing spore.(...)
Resumo:
Probing micro-/nano-sized surface conformations, which are ubiquitous in biological systems, by using liquid crystal droplets, which change their ordering and optical appearance in response to the presence of more than ten times smaller cellulose based micro/nano fibers, might find new uses in a range of biological environments and sensors. Previous studies indicate that electrospun micro/nano cellulosic fibers produced from liquid crystalline solutions could present a twisted form [1]. In this work, we study the structures of nematic liquid crystal droplets threaded by cellulose fibers prepared from liquid crystalline and isotropic solutions as well as droplets pierced by spider-made fibers [2]. Planar anchoring at the fibers and planar and homeotropic at the drop surfaces allowed probing cellulose fibers different helical structures as well as aligned filaments.