3 resultados para sp-equared sp2 sp^2 hybrid orbital
Resumo:
L'analyse pollinique des sédiments argileux, riches en macrorestes de végétaux, du "Belasien» (Crétacé inférieur) de Buarcos a permis reconnaître la présence d'une riche microflore. On a, nottament, reconnu la présence de: Concavisporites punctatus, Auritulinosporites complexis, Chomotriletes sp., Trilobosporites cf. bernissartensis, Apiculatisporites vulgaris, Cicatricosisporites sp. 1, Cicatricosisporites sp. 2. Cicatricosisporites sp. 3, Cicatricosisporites sp. 4, Cicatricosisporites sp. 5, Cicatricosisporites sp. 6. Costatoperforosporites fistulosus, Ceratosporites sp. l, C. cf. equalis, Ischyosporites teixeirae n. sp., Liburnisporites sp. AequitriraditeS cf. spinulosus, Cedripites lusitanicus, Clavatipollenites cf. hughesi. Après discution de la stratigraphie des diffèrentes espèces on sugère une âge barremo-aptien pour cette association malgré la présence de l'ensemble Apiculalisporites vulgaris-Classopollls major plutôt d'âge Aptien.
Resumo:
Dissertação apresentada para a obtenção do Grau de Mestre em Genética Molecular e Biomedicina, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Release of chloroethene compounds into the environment often results in groundwater contamination, which puts people at risk of exposure by drinking contaminated water. cDCE (cis-1,2-dichloroethene) accumulation on subsurface environments is a common environmental problem due to stagnation and partial degradation of other precursor chloroethene species. Polaromonas sp. strain JS666 apparently requires no exotic growth factors to be used as a bioaugmentation agent for aerobic cDCE degradation. Although being the only suitable microorganism found capable of such, further studies are needed for improving the intrinsic bioremediation rates and fully comprehend the metabolic processes involved. In order to do so, a metabolic model, iJS666, was reconstructed from genome annotation and available bibliographic data. FVA (Flux Variability Analysis) and FBA (Flux Balance Analysis) techniques were used to satisfactory validate the predictive capabilities of the iJS666 model. The iJS666 model was able to predict biomass growth for different previously tested conditions, allowed to design key experiments which should be done for further model improvement and, also, produced viable predictions for the use of biostimulant metabolites in the cDCE biodegradation.