52 resultados para shifting boundaries
Resumo:
33rd IAHR Congress: Water Engineering for a Sustainable Environment
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Tese de doutoramento em Filosofia
Resumo:
Algarve Province, Southern Portugal, corresponds in part to a meso-cenozoic basin running along the coast from Cabo S. Vicente to beyond Spanish border. Structurally it is a big monocline plunging southwards much deformed mainly by two East-West longitudinal flexures. Lithostratigraphical and chronostratigraphical studies dealt specially with Jurassic formations. This and the geological mapping of the post-Hercynian sedimentary formations allow us to define the following units: Triassic-Lower Liassic Arenitos de Silves (Silves sandstones sensu P. Choffat, pro parte) - At their base the Silves sandstones (0-150m) are represented mainly by cross-bedded red sandstones. This unit is Upper Triassic (Keuper) in age, on the evidence of some Brachiopoda. Complexo margo-carbonatado de Silves (Silves marl-limestone complex=Silves sandstones sensu P. Choffat, pro parte) (80-200m) overlies the preceding, it may be reported to the Upper Triassic-Hettangian. It consists of a thick pelite-marl-dolomite-limestone series with many intercalations of greenstones. Since no fossils were found it is not possible to conclude whether it is still Hettangian or if it does correspond, in the whole or in part, already to the Sinemurian. Liassic Dolomitos e calcários dolomíticos de Espiche (Espiche dolomite-rocks and dolomitic-limestones) - The usually massive and finely crystalline or saccharoidal dolomites and dolomitic-limestones are the toughest strata of the Algarve margin giving rise to several hills. Its thickness attains in certain points 60 metres at least. Based on geometry and on lithological similarities with the carbonated complex of the northern basin of Tagus river (Peniche, São Pedro de Muel, Quiaios), this formation can be accepted as Sinemurian in age. As it happens with the carbonated complex, here also the first dolomite beds are non-isochronal throughout the region; upper time-limit of the dolomitic facies is either Lower Carixian, Lower Toarcian or even Lower Dogger. The dolomitization is secondary but not much later than sedimentation. However, between Cabo S. Vicente-Vila do Bispo there is evidence of an even later secondary dolomitization related to the regional fault complex. Calcário dolomítico com nódulos de silex da praia de Belixe (Belixe beach dolomitic-limestone with silex nodules) (50-55m) - Ascribed to Lower or Middle Carixian on the basis of Platypleuroceras sp., Metaderoceras sp. nov. and M. gr. Venarense. Calcário cristalino compacto com Protogrammoceras, Fuciniceras e ? Argutarpites de Belixe (Belixe compact crystalline limestone with Protogrammoceras, Fuciniceras and ? Argutarpites) (30m) - Ascribed to Lower Domerian. Middle and Upper Domerian are indicated but by a single specimen of ? Argutarpites. Calcários margosos e margas com Dactylioceras semicelatum e Harpoceratídeos de Armação Nova (Armação Nova marly limestones and marls with D. semicelatum and Harpoceratidae) (25m) -Ascribed to Lower Toarcian. Middle and Upper Toarcian formations are not known in the Algarve. Dogger Calcários oolíticos, c. corálicos, c. pisolíticos, c. calciclásticos, c. dolomíticos e dolomitos de Almadena (Almadena oolitic-limestones, coral-reef-limestones, pisolite-limestones, limeclastic-limestones, dolomitic-limestones and dolomite-rocks) (more than 50 metres), with lagoonal facies. Ascribed to Aalenian-Bathonian-? Callovian. Margas acinzentadas e calcários detríticos com Zoophycos da praia de Mareta (Mareta beach greyish marls and detritical limestones with Zoophycos) (40m) - Pelagic transreef facies with Upper Bajocian and Bathonian ammonites. Calcários margosos e margas da praia de Mareta (Mareta beach pelagic marly-limestones and marls) (110m) - Ascribed to the Callovian on its ammonites. Malm Near Cabo S. Vicente and Sagres the first Upper Jurassic level consists of a yellowish-brown nodular, compact, locally phosphated and ferruginous, sometimes conglomeratic, marly limestone (0,35-1,50m) containing a rich macrofauna, which includes: 1) Callovian forms unknown at Lower Oxfordian; 2) Upper Callovian forms that still survived in Lower and Middle Oxfordian; 3) Lower Oxfordian forms (Mariae and Cordatum Zones); 4) Lower and Middle Oxfordian forms (Mariae to Plicatilis Zone); 5) Middle Oxfordian forms (plicatilis Zone), and some ones appearing in Middle Oxfordian. This condensed deposit is therefore dated from Middle Oxfordian (Plicatilis Zone). The other Upper Jurassic lithostratigraphical units were also mapped but their detailed study is not presented in this work. Correlations between lithostratigraphical and chronostratigraphical scales from P. Choffat, J. Pratsch, C. Palain and from the author are stated. Further correlations are attempted between zonc scales of Carixian-Lower Toarcian and Upper Bajocian-Middle Oxfordian of France, Spain (Asturias, Iberian and Betic Chains), Argel (Orania) and Portugal (northern Tagus basin and Algarve). The study of pyritous fossil assemblages common in Upper Bathonian-Lower Callovian marly levels of the praia da Mareta seems to suggest that these sediments were deposited in a bay or in an almost closed coastal re-entrance virtually without deep water circulation. Although such conditions may occur at any depth one may suppose that these ones actually correspond to an infralittoral neritic environment. The thaphocoenosis collected there are almost entirely composed of nektonic (ammonites, Belemnites) and planktonic (Bositra) faunas. The sedentary (crinoids, brachiopods) or free (sea-urchins, gastropods) epibenthonic forms are very scarce; endobenthonic forms are not known. The palaeontological study of all Nautiloids and Ammonoids of the Liassic and Dogger is presented (except Kosmoceratidae and Perisphinctaceae). Among the thirty one taxa dealt with, one is new (Metaderoceras sp. nov.) and the great majority of the others has been identified for the first time in Algarve. Some others have never been reported before in Portuguese formations. The evolution, during Jurassic times, of the sedimentary basins of the Portuguese plate margin is described. The absence of Cephalopods in the very extensive marly and dolomitic limestones, partly marine, suggests that, during Lower Liassic, palaeogeography underwent no great changes. Dolomitic-limestone with silex nodules from Cabo S. Vicente contain the first ammonites recorded at the base of the Middle Liassic. This facies, although very common in Tethys, is unknown north of the Tagus. The faunal assemblage has a mediterranean to submediterranean character. Comparisons between faunal assemblage" from Algarve with the ones known north of the Tagus show that communications between Boreal Europe and Tethys, virtually non-existent during Lower and Middle Carixian, became very easy during Lower Domerian. In earlier Pliensbachian times two distinct seas were adjacent to the Iberian plate. One, an epicontinental sea with a tethyan fauna, extended southwards from the Meseta margin. Another, was a boreal sea; during its transgressive episodes boreal faunas attained into the basin north of the Tagus. During Middle Carixian and Lower Domerian, owing to simultaneous transgressions, these two seas joined together allowing faunal exchanges along the epicontinental areas which limited the emerging hercynian chains belts. During Liassic, the Algarve belonged undoubtedly to the tethyan submediterranean province. The area north of the Tagus, on the contrary, was a complex realm where subboreal and tethyan affinities alternatively prevailed. In the Algarve the first Middle Jurassic deposits do frequently show lateral thickness reductions as well as unconformities contemporaneous with other generalized disturbances on the sedimentation processes in other parts of Europe. By this time, near Sagres, a barrier reef developed separating lagoonal or ante-reef facies from the transreef pelagic zone. The presence of tethyan fauna, the abundance of Phylloceratidae and the absence of boreal forms allow us to consider the Algarve basin as a submediterranean province. The presence of Callovian pelagic fossiliferous formations in the Loulé area shows that during Middle Jurassic the marl-limestone transreef sedimentation was not confined to the western Algarve. They would extend eastwards where they only can be seen in the core of some anticlines. This is due to the progressive sinking of the meso-cenozoic formations as we proceed towards the South of the Sagres-Algoz-Querença flexure. In the whole of the Peninsule, and as for the Middle Callovian, an important regression can be clearly recognized on the evidence of an erosion surface which strikes obliquely the Middle and Upper Callovian strata. The geographic boundaries of the different faunal provinces are not changed by the presence of many Kosmoceratidae in the phosphate nodules since they are but a minority in comparison with the tethyan forms. An abstract model can be constructed showing that in Western Europe the Kosmoceratidae may have migrated South and westwards through a channel of the sea that linked Paris basin to Poitou and Aquitaine. By migrating between the Iberian meseta and the Armorican massif this fauna reached northern Tagus basin at the beginning of Upper Callovian (Athleta Zone); this south and southwest bound migration would have proceeded, allowing such forms to reach Algarve basin only in latest Callovian times (Lamberti Zone). This migration means that during Middle Jurassic a widely spread North Atlantic sea would exist, flooding the western part of Portugal up to the Poitou.
Resumo:
The evolution of the Lusitanian Basin, localized on the western Iberian margin, is closely associated with the first opening phases of the North Atlantic. It persisted from the Late Triassic to the Early Cretaceous, more precisely until the end of the Early Aptian, and its evolution was conditioned by inherited structures from the variscan basement. The part played by the faults that establish its boundaries, as regards the geometric and kinematic evolution and the organization of the sedimentary bodies, is discussed here, as well as with respect to important faults transversal to the Basin. A basin evolution model is proposed consisting of four rifting episodes which show: i) periods of symmetrical (horst and graben organization) and asymmetrical (half graben organization) geometric evolution; ii) diachronous fracturing; iii) rotation of the main extensional direction; iv) rooting in the variscan basement of the main faults of the basin (predominantly thick skinned style). The analysis and regional comparison, particularly with the Algarve Basin, of the time intervals represented by important basin scale hiatuses near to the renovation of the rifting episodes, have led to assume the occurrence of early tectonic inversions (Callovian–Oxfordian and Tithonian–Berriasian). The latter, however, had a subsequent evolution distinct from the first: there is no subsidence renovation, which is discussed here, and it is related to a magmatic event. Although the Lusitanian Basin is located on a rift margin which is considered non-volcanic, the three magmatic cycles as defined by many authors, particularly the second (approx. 130 to 110 My ?), performed a fundamental part in the mobilization of the Hettangian evaporites, resulting in the main diapiric events of the Lusitanian Basin. The manner and time in which the basin definitely ends its evolution (Early Aptian) is discussed here. Comparisons are established with other west Iberian margin basins and with Newfoundland basins. A model of oceanization of this area of the North Atlantic is also presented, consisting of two events separated by approximately 10 My, and of distinct areas separated by the Nazaré fault. The elaboration of this synthesis was based on: - information contained in previously published papers (1990 – 2000); - field-work carried out over the last years, the results of which have not yet been published; - information gathered from the reinterpretation of geological mapping and geophysical (seismic and well logs) elements, and from generic literature concerning the Mesozoic of the west iberian margin.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Rev. Soc. Geol. España, 12(1), ano 1999
Resumo:
EUROPEAN MASTER’S DEGREE IN HUMAN RIGHTS AND DEMOCRATISATION Academic Year 2007/2008
Resumo:
The lithostratigraphic units (2 groups, 5 formations and 4 members) of the Tertiary of the Miranda do Corvo-Viseu region (Central Portugal) are here described. For each unit the characterization and description (boundaries, diagnostic properties and atributes) were included. The stratigraphic, lithological, sequential and tectonic data allow correlations with other units of the same Tertiary basin located more to west and support the chronostratigraphic attribution. Sedimentologic characteristics of the deposits lead to the interpretation of the influence of tectonism, climate and eustasy during the sedimentary evolution of this Basin.
Resumo:
Correlation between facies associations (marine, estuarine and distal fluviatile environments) and disconformities, observed between Foz da Fonte (SW of Setúbal Peninsula) and Santa Iria da Azóia (NE of Lisbon) are presented. The precise definition of the marine-continental facies relationships improved very much the chronology of the depositional sequence boundaries. Tectonic and eustatic controls are discussed on the basis of subsidence rates variation.
Resumo:
Mineralogical assemblages, specially clay mineral assemblages, have been widely used in multidisciplinary stratigraphical studies. This paper presents the results obtained in the study of a Lower Cretaceous depositional sequence from the Lusitanian Basin (Portugal). The Upper Hauterivian – Lower Barremian section at Guincho Fort pertains mostly to the Ha7 3rd order depositional sequence defined by J. REY & al. (2003) and has been studied in a detailed bed-by-bed sampling corresponding to a total of 85 samples. The analysis of the obtained clay mineral assemblages has contributed to the paleoenvironmental and paleogeographical reconstruction of the studied interval and has improved the sequence stratigraphic interpretation and positioning of sequence boundaries and other sequential surfaces (transgressive and flooding surfaces).
Resumo:
European Master's Degree in Human Rights and Democatisation Academic Year 2008/2009
Resumo:
Trabalho apresentado no âmbito do Doutoramento em Informática, como requisito parcial para obtenção do grau de Doutor em Informática