10 resultados para rylene dyes
Resumo:
Presented thesis at Faculdade de Ciências e Tecnologias, Universidade de Lisboa, to obtain the Master Degree in Conservation and Restoration of Textiles
Resumo:
Presented at Faculdade de Ciências e Tecnologias, Universidade de Lisboa, to obtain the Master Degree in Conservation and Restoration of Textiles
Resumo:
Mesoamerican cultures had a strong tradition of written and pictorial manuscripts, called the codices. In studies already performed it was found the use of Maya Blue, made from a mixture of indigo and a clay called palygorskite, forming an incredibly stable material where the dye is trapped inside the nanotubes of the clay, after heating. However, a bigger challenge lies in the study of the yellows used, for these civilizations might have used this clay-dye mixture to produce their yellow colorants. As a first step, it was possible to provide identification, by non-invasive methods, of two colorants (a flavonoid and a carotenoid). While the flavonoid absorbed between 368-379 nm, the carotenoid would absorb around 455 nm. A temperature study also conducted allowed to set 140ºC as the desirable temperature to heat the samples without degrading them. FT-IR, conventional Raman and SERS allowed us to understand the existence of a reaction between the dyes and the clays (palygorskite and kaolinite), however it is difficult to understand it in a molecular point of view. As a second step, five species of Mexican dyes were selected on the basis of historical sources. The Maya yellow samples were produced adapting the recipe proposed by Reyes-Valerio, supporting the yellow dyes extracted from the dried plants on the clays, with addition of water, and then heated at 140ºC. It was found that the addition of water in palygorskite would increase the pH, hence deprotonating the molecules having a clear negative effect in the color. A second recipe was developed, without the addition of water; however, it was found that the use of water based binders would still alter the color of the samples with palygorskite. In this case, kaolinite without heating yield better results as a Maya yellow hybrid. It was found that the Maya chemistry might not have been the same for all the colors. The Mesoamericans might have found that different dyes could work better to their desires if matched with different clays. It was noticeable that for a clear distinction between flavonoids and carotenoids the reflectance and emission studies suffice, but when clay is added, Raman techniques will perform better. For this reason, conventional Raman and SERS were employed in order to create a database for the Mesoamerican dyestuffs for a future identification.
Resumo:
Environmental pollution is one of the major and most important problems of the modern world. In order to fulfill the needs and demands of the overgrowing human population, developments in agriculture, medicine, energy sources, and all chemical industries are necessary (Ali 2010). Over the last century, the increased industrialization and continued population growth led to an augmented production of environmental pollutants that are released into air, water, and soil, with significant impact in the degradation of various ecosystems (Ali 2010, Khan et al. 2013).(...)
Resumo:
RESUMO: O efluxo de compostos antimicrobianos é um mecanismo importante na multirresistência em bactérias. Bombas de efluxo codificadas em plasmídeos, como a QacA e a Smr, estão implicadas na susceptibilidade reduzida a biocidas, geralmente utilizados na prevenção e controlo de infecções nosocomiais, incluindo as causadas por estirpes de Staphylococcus aureus resistentes à meticilina (MRSA). Neste trabalho pretendeu-se avaliar a relevância de QacA e Smr no perfil de susceptibilidade dos isolados clínicos MRSA SM39 e SM52, que transportam os plasmídeos pSM39 e pSM52 com os determinantes qacA e smr, respectivamente. A actividade de efluxo das estirpes SM39 e SM39 curada (sem pSM39) e das estirpes SM52 e RN4220:pSM52 (estirpe susceptível RN4220 transformada com pSM52) foi caracterizada por: (1) determinação da concentração mínima inibitória (CMI) de biocidas, corantes e antibióticos, na ausência e presença dos inibidores de efluxo tioridazina, clorpromazina, verapamil e reserpina; e (2) fluorometria em tempo-real. A determinação de CMIs demonstrou que a actividade de efluxo mediada por QacA e Smr está envolvida na susceptibilidade reduzida aos biocidas e corantes testados, que incluíram o brometo de hexadeciltrimetilamónio, a cetrimida, o cloreto de benzalcónio, a berberina, o cloreto de dequalínio, a pentamidina e o brometo de etídeo. Os ensaios fluorométricos confirmaram a elevada actividade de efluxo presente nas estirpes com os genes qacA ou smr. A determinação de CMIs para antibióticos β-lactâmicos em conjunto com o teste da nitrocefina revelou a presença simultânea do gene qacA e de uma β-lactamase no plasmídeo pSM39. Este trabalho evidencia a importância das bombas de efluxo QacA e Smr na resistência a biocidas em estirpes MRSA e na sobrevivência destas estirpes em ambiente hospitalar e na comunidade, para além de destacar a questão da potencial co-resistência entre biocidas e antibióticos.--------------- ABSTRACT: Drug efflux has become an important cause of multidrug resistance (MDR) in bacteria. Plasmid-encoded MDR efflux pumps, such as QacA and Smr, are implicated in reduced susceptibility to biocides, generally used in the prevention and control of nosocomial infections, including the ones caused by methicillin-resistant Staphylococcus aureus (MRSA). In this work, we aimed to evaluate the relevance of QacA and Smr to the susceptibility profile of the clinical MRSA isolates SM39 and SM52, which harbor the plasmids pSM39 and pSM52 that carry the determinants qacA and smr, respectively. Efflux activity of strain SM39 and its plasmid-free counterpart, SM39 cured, SM52 and RN4220:pSM52 (susceptible strain RN4220 transformed with pSM52) was characterized by: (1) determination of minimum inhibitory concentration (MIC) of biocides, dyes and antibiotics, in the absence and presence of the efflux inhibitors thioridazine, chlorpromazine, verapamil and reserpine; and (2) real-time fluorometry. MIC determination showed that QacA and Smr mediated efflux was involved in the reduced susceptibility profile to the biocides and dyes tested, which included hexadecyltrymethylammonium bromide, cetrimide, benzalkonium chloride, berberine, dequalinium chloride, pentamidine and ethidium bromide. Fluorometric assays confirmed the higher efflux activity present in strains harboring qacA or smr genes. Moreover, MIC determination for β-lactam antibiotics together with the nitrocefin test confirmed the presence of a β-lactamase in the plasmid carried by SM39 strain, pSM39. This work highlights the relevance of QacA and Smr to the biocide resistance in MRSA strains, and consequently to their survival and maintenance in the hospital environment and in the community. Furthermore, the presence of a β-lactamase and qacA determinants in the the same plasmid reinforces the question of the potencial biocide/antibiotic co-resistance in MRSA strains.
Resumo:
Dissertation presented to obtain the Ph.D degree in Engineering Sciences and Technology
Resumo:
Doctorate in Biology, Specialty in Biotechnology
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.
Resumo:
White Color tuning is an attractive feature that Organic Light Emitting Diodes (OLEDs) offer. Up until now, there hasn’t been any report that mix both color tuning abilities with device stability. In this work, White OLEDs (W-OLEDs) based on a single RGB blend composed of a blue emitting N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) doped with a green emitting Coumarin-153 and a red emitting 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM1) dyes were produced. The final device structure was ITO/Blend/Bathocuproine (BCP)/ Tris(8-hydroxyquinolinato)aluminium (Alq3)/Al with an emission area of 0.25 cm2. The effects of the changing in DCM1’s concentration (from 0.5% to 1% wt.) allowed a tuning in the final white color resulting in devices capable of emitting a wide range of tunes – from cool to warm – while also keeping a low device complexity and a high stabilitty. Moreover, an explanation on the optoelectrical behavior of the device is presented. The best electroluminescense (EL) points toward 160 cd/m2 of brightness and 1.1 cd/A of efficiency, both prompted to being enhanced. An Impedance Spectroscopy (IS) analysis allowed to study both the effects of BCP as a Hole Blocking Layer and as an aging probe of the device. Finally, as a proof of concept, the emission was increased 9 and 64 times proving this structure can be effectively applied for general lighting.