6 resultados para probe molecule
Resumo:
Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, for the degree of Doctor of Philosophy in Biochemistry
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Física
Resumo:
Dissertation presented to obtain the Ph.D degree in Chemistry.
Resumo:
The present article is based on the MA thesis of Hou Bowen (Ph.D candidate) and on the presentation made at the ISA World Congress of Sociology held in Yokohama (Japan) on July 2014 at the Session on “Assessing Technologies: Global Patterns of Trust and Distrust” of RC23-Sociology of Science and Technology.
Resumo:
Fully comprehending brain function, as the scale of neural networks, will only be possi-ble with the development of tools by micro and nanofabrication. Regarding specifically silicon microelectrodes arrays, a significant improvement in long-term performance of these implants is essential. This project aims to create a silicon microelectrode coating that provides high-quality electrical recordings, while limiting the inflammatory response of chronic implants. To this purpose, a combined chitosan and gold nanoparticles coating was produced allied with electrodes modification by electrodeposition with PEDOT/PSS in order to reduce the im-pedance at 1kHz. Using a dip-coating mechanism, the silicon probe was coated and then charac-terized both morphologically and electrochemically, with focus on the stability of post-surgery performance in anesthetized rodents. Since not only the inflammatory response analysis is vital, the electrodes recording degradation over time was also studied. The produced film presented a thickness of approximately 50 μm that led to an increase of impedance of less than 20 kΩ in average. On a 3 week chronic implant, the impedance in-crease on the coated probe was of 641 kΩ, compared with 2.4 MΩ obtained for the uncoated probe. The inflammatory response was also significantly reduced due to the biocompatible film as proved by histological tests.
Resumo:
The advent of bioconjugation impacted deeply the world of sciences and technology. New biomolecules were found, biological processes were understood, and novel methodologies were formed due to the fast expansion of this area. The possibility of creating new effective therapies for diseases like cancer is one of big applications of this now big area of study. Off target toxicity was always the problem of potent small molecules with high activity towards specific tumour targets. However, chemotherapy is now selective due to powerful linkers that connect targeting molecules with affinity to interesting biological receptors and cytotoxic drugs. This linkers must have very specific properties, such as high stability in plasma, no toxicity, no interference with ligand affinity nor drug potency, and at the same time, be able to lyse once inside the target molecule to release the therapeutic warhead. Bipolar environments between tumour intracellular and extracellular medias are usually exploited by this linkers in order to complete this goal. The work done in this thesis explores a new model for that same task, specific cancer drug delivery. Iminoboronates were studied due to its remarkable selective stability towards a wide pH range and endogenous molecules. A fluorescence probe was design to validate this model by creating an Off/On system and determine the payload release location in situ. A process was optimized to synthetize the probe 8-(1-aminoethyl)-7-hydroxy-coumarin (1) through a reductive amination reaction in a microwave reactor with 61 % yield. A method to conjugate this probe to ABBA was also optimized, obtaining the iminoboronate in good yields in mild conditions. The iminoboronate model was studied regarding its stability in several simulated biological environments and each half-life time was determined, showing the conjugate is stable most of the cases except in tumour intracellular systems. The construction of folate-ABBA-coumarin bioconjugate have been made to complete this evaluation. The ability to be uptaken by a cancer cell through endocytosis process and the conjugation delivery of coumarin fluorescence payload are two features to hope for in this construct.