4 resultados para prickly-pear


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of natural pigments instead of synthetic colourants is receiving growing interest in the food industry. In this field, cactus pears (Opuntia spp.) have been identified to be a promising betalainic crops covering a wide coloured spectrum. The aim of this work was to develop adequate clean and mild methodologies for the isolation and encapsulation of betacyanins, from cactus pear fruits (Opuntia spp.). Firstly, two different emerging technologies, namely PLE (Pressurized Liquid Extraction) and HPCDAE (High Pressure Carbon Dioxide-Assisted Extraction), were exploited to isolation of betacyanins form cactus pear fruits. Different process conditions were tested for the maximum recovery of betacyanins. Results showed that highest extraction yields were achieved for HPCDAE and mass ratio of pressurized carbon dioxide vs. acidified water was the parameter that most affected the betacyanins extraction. At optimum conditions of HPCDAE, Opuntia spp. extract presented a total betacyanin content of 211 ± 10 mg/100 g whereas extracts obtained using conventional extraction, PLE in static and in dynamic mode presented a total betacyanin content of 85 ± 3, 191 ± 2 and 153 ± 5 mg/100 g, respectively. HPCDAE has proven to be a successful technology to extract betacyanins from Opuntia spp. fruits. Afterward, Supercritical Fluid Technology was exploited to develop lipidic particles of betalain-rich extract. A betacyanin-rich conventional extract was encapsulated by PGSS® (Particles from Gas Saturated Solutions) technique. Different process conditions were tested in order to model the encapsulation of betacyanins. The pressure had a negative effect on betacyanin encapsulation. Lower pressures leads to an increase in the betacyanin encapsulation. This effect was more pronounced at higher temperatures and lower equilibrium time. At these conditions, Opuntia spp. particles presented 64.4 ± 4.5 mg/100 g and high antioxidant capacity. When compared with the Opuntia spp. dried extract, lipidic particles contributed to a better homogenization of the pink colour after incorporation in ice cream.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focuses on the assessment of the fermentation conditions required to modulate the metabolic flux in the osmotolerant yeast Candida magnoliae and evaluate its potential to produce low-alcoholic and low-caloric fermented beverages. For that purpose, two strains, PYCC 2903 and PYCC 3191, were used and fermentation conditions as oxygenation, sugar concentration and the ratio of glucose to fructose were studied using synthetic culture media. Candida magnoliae PYCC 2903 was subsequently used to ferment real industrial fructose-rich substrates such as fruit juices. Sugar consumption profiles for C.magnoliae PYCC 2903 incubated aerobically in the presence of high fructose and glucose concentrations (15%, 10% and 5%) showed a selective utilization of fructose, denoting a preference for this sugar over glucose. The lower ratio between ethanol and sugar alcohols yield was obtained for both strains incubated under oxygen limitation simulating industrial fructose-rich substrates, confirming the ability of this yeast to direct fermentation towards alternative products. Enzymatic assays for hexokinase activity in terms of capacity and affinity for glucose and fructose were performed, aiming to elucidate its contribution to the fructophilic behaviour of this yeast. Enzymatic assays for both strains showed that the Vmax is two to threefold higher for fructose than for glucose but Km is also 10-20-fold higher for this sugar than for glucose. Hence, hexokinase kinetic properties do not explain fructophily in C.magnoliae. This indicates that fructose transport is probably determining in this respect, as observed for other fructophilic yeasts. Fruit juice fermentations with C.magnoliae PYCC 2903 revealed a potential for the production of beverages with interesting sensorial properties. Pear and peach fermentations exhibited the best results with the lowest ratio between ethanol and sugar alcohols yield and the most pleasant organoleptic features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Countries are currently faced with problems derived from changes in lifespan and an increase in lifestyle-related diseases. Neurodegenerative disorders such Parkinson’s (PD) and Alzheimer’s (AD) diseases are an increasing problem in aged societies. Data from World Alzheimer Report 2011 indicate that 36 million people worldwide are living with dementia. Oxidative stress has been associated with the development of AD and PD. Therefore there is interest to search for effective compounds or therapies to combat the oxidative damage in these diseases. Current evidence strongly supports a contribution of phenolic compounds present in fruits and vegetables to the prevention of neurodegenerative diseases such AD and PD. The industrial processing of a wide variety of fruits results in the accumulation of by-products without commercial value. Opuntia ficus-indica (cactus pear) is consumed fresh and processed like in juice. Prunnus avium (sweet cherry) is consumed fresh but the organoleptics characteristics of the fruits leads to the smaller and ragged fruits have no commercial value. Fruit extracts of both species has described to be rich in phenolic compounds and to have high antioxidant activities due to its composition. The aim of this work was assessing the efficacy of O. ficus-indica and P. avium by-products extracts obtained with conventional solvent extraction and pressurized liquid extraction in a neurodegeneration cell model. All extracts have protected neuroblastoma cells from H2O2-induced death at low, non-toxic levels, which approach to physiologically-relevant serum concentration. However, cherry extract has a slighter neuroprotective activity. The protective effect of Opuntia extracts are not conducted by a direct antioxidant activity since there are not decreases in intracellular ROS levels in cell treated with extracts and challenged with H2O2, while cherry extract neuroprotection seems to be due to a direct scavenging activity. Extracts from different biological matrixes seems to protect neuronal cells trough different cellular mechanisms.