45 resultados para power measurements
Resumo:
Since the invention of photography humans have been using images to capture, store and analyse the act that they are interested in. With the developments in this field, assisted by better computers, it is possible to use image processing technology as an accurate method of analysis and measurement. Image processing's principal qualities are flexibility, adaptability and the ability to easily and quickly process a large amount of information. Successful examples of applications can be seen in several areas of human life, such as biomedical, industry, surveillance, military and mapping. This is so true that there are several Nobel prizes related to imaging. The accurate measurement of deformations, displacements, strain fields and surface defects are challenging in many material tests in Civil Engineering because traditionally these measurements require complex and expensive equipment, plus time consuming calibration. Image processing can be an inexpensive and effective tool for load displacement measurements. Using an adequate image acquisition system and taking advantage of the computation power of modern computers it is possible to accurately measure very small displacements with high precision. On the market there are already several commercial software packages. However they are commercialized at high cost. In this work block-matching algorithms will be used in order to compare the results from image processing with the data obtained with physical transducers during laboratory load tests. In order to test the proposed solutions several load tests were carried out in partnership with researchers from the Civil Engineering Department at Universidade Nova de Lisboa (UNL).
Resumo:
In cataract surgery, the eye’s natural lens is removed because it has gone opaque and doesn’t allow clear vision any longer. To maintain the eye’s optical power, a new artificial lens must be inserted. Called Intraocular Lens (IOL), it needs to be modelled in order to have the correct refractive power to substitute the natural lens. Calculating the refractive power of this substitution lens requires precise anterior eye chamber measurements. An interferometry equipment, the AC Master from Zeiss Meditec, AG, was in use for half a year to perform these measurements. A Low Coherence Interferometry (LCI) measurement beam is aligned with the eye’s optical axis, for precise measurements of anterior eye chamber distances. The eye follows a fixation target in order to make the visual axis align with the optical axis. Performance problems occurred, however, at this step. Therefore, there was a necessity to develop a new procedure that ensures better alignment between the eye’s visual and optical axes, allowing a more user friendly and versatile procedure, and eventually automatizing the whole process. With this instrument, the alignment between the eye’s optical and visual axes is detected when Purkinje reflections I and III are overlapped, as the eye follows a fixation target. In this project, image analysis is used to detect these Purkinje reflections’ positions, eventually automatically detecting when they overlap. Automatic detection of the third Purkinje reflection of an eye following a fixation target is possible with some restrictions. Each pair of detected third Purkinje reflections is used in automatically calculating an acceptable starting position for the fixation target, required for precise measurements of anterior eye chamber distances.
Resumo:
Of all of the sources of renewable energies available one can argue that the most abundant and accessible are solar power, radiation, and the energy of the tides (70 % of the earth surface is covered by water). The tidal wave energy hasn’t seen a widespread distribution yet, mainly due to the lack of interest of the governments, most of the coastal areas of the world are exclusive responsibility of the governments, thus not easily open for private venture. Considering solar power, there exist two main fields of application, land based systems and space based systems. The former systems are still in a very embryonic phase, with Japan being the lead researcher in the field, with an experimental satellite-power station to be launched before 2010. Land based systems, on the other hand, are well studied, with major research and application programs in all known forms of solar power production. Given a minimum value of incident radiation, and applying the appropriate system, (i.e. power plant type), for any given area the solar power becomes an income-producing industry.
Resumo:
IEEE International Symposium on Circuits and Systems, MAY 25-28, 2003, Bangkok, Thailand. (ISI Web of Science)
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 220 – 223, Seattle, EUA
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 2258 – 2261, Seattle, EUA
Resumo:
15th IEEE International Conference on Electronics, Circuits and Systems, Malta
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau em Mestre em Engenharia Física
Resumo:
Quimica Nova, Vol. 32, Nº2
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Física - Física Aplicada pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
1st European IAHR Congress, 6-4 May, Edinburgh, Scotland
Resumo:
When China launched an anti-satellite (ASAT) weapon in January 2007 to destroy one of its inactive weather satellites, most reactions from academics and U.S. space experts focused on a potential military “space race” between the United States and China. Overlooked, however, is China’s growing role as global competitor on the non-military side of space. China’s space program goes far beyond military counterspace applications and manifests manned space aspirations, including lunar exploration. Its pursuit of both commercial and scientific international space ventures constitutes a small, yet growing, percentage of the global space launch and related satellite service industry. It also highlights China’s willingness to cooperate with nations far away from Asia for political and strategic purposes. These partnerships may constitute a challenge to the United States and enhance China’s “soft power” among key American allies and even in some regions traditionally dominated by U.S. influence (e.g., Latin America and Africa). Thus, an appropriate U.S. response may not lie in a “hard power” counterspace effort but instead in a revival of U.S. space outreach of the past, as well as implementation of more business-friendly export control policies.
Resumo:
RESUMO: Contexto: Indicadores fidedignos da composição corporal são importantes na orientação das estratégias nutricionais de recém-nascidos e pequenos lactentes submetidos a cuidados intensivos. O braço é uma região acessível para avaliar a composição corporal regional, pela medida dos seus compartimentos. A antropometria e a ultrassonografia (US) são métodos não invasivos, relativamente económicos, que podem ser usados à cabeceira do paciente na medição desses compartimentos, embora esses métodos não tenham ainda sido validados neste subgrupo etário. A ressonância magnética (RM) pode ser usada como método de referência na validação da medição dos compartimentos do braço. Objectivo: Validar em lactentes pré-termo, as medidas do braço por antropometria e por US. Métodos: Foi estudada uma coorte de recém-nascidos admitidos consecutivamente na unidade de cuidados intensivos neonatais, com 33 semanas de idade de gestação e peso adequado para a mesma, sem anomalias congénitas major e não submetidas a diuréticos ou oxigenoterapia no momento da avaliação. Nas vésperas da alta, foram efectuadas medições do braço, com ocultação, pelos métodos antropométrico, ultrassonográfico e RM. As medidas antropométricas directas foram: peso (P), comprimento (C), perímetro cefálico (PC), perímetro braquial (PB) e prega cutânea tricipital (PT). As área braquial total, área muscular (AM) e área adiposa foram calculadas pelos métodos de Jeliffee & Jeliffee e de Rolland-Cachera. Utilizando uma sonda PSH-7DLT de 7 Hz no ecógrafo Toshiba SSH 140A foram medidos os perímetros braquial e muscular e calculadas automaticamente as áreas braquial e muscular, sendo a área adiposa obtida por subtracção. Como método de referência foi utilizada a RM – Philips Gyroscan ACS-NT, Power-Track 1000 ®, 1.5 Tesla com uma antena de quadratura do joelho. Na análise estatística foram utilizados os métodos paramétricos e não paramétricos, conforme adequado. Resultados: Foram incluídas 30 crianças, nascidas com ( ±DP) 30.7 ±1.9 semanas de gestação, pesando 1380 ±325g, as quais foram avaliadas às 35.4 ±1.1 semanas de idade corrigida, quando pesavam 1786 ±93g. Nenhuma das medidas antropométricas, individualmente, constitui um indicador aceitável (r2 <0.5) das medições por RM. A melhor e mais simples equação alternativa encontrada é a que estima a AM (r2 = 0.56), derivada dos resultados da análise de regressão múltipla: AMRM = (P x 0.17) + (PB x 5.2) – (C x 6) – 150, sendo o P expresso em g, o C e o PB em cm. Nenhuma das medidas ultrassonográficas constitui um indicador aceitável (r2 <0.4) das medições por RM. Conclusões: A antropometria e as medidas ultrassonográficas do braço não são indicadores fidedignos da composição corporal regional em lactentes pré-termo, adequados para a idade de gestação.----------ABSTRACT: Background: Accurate predictors for body composition are valuable tools guiding nutritional strategies in infants needing intensive care. The upper-arm is a part of the body that is easily accessible and convenient for assessing the regional body composition, throughout the assessment of their compartments. Anthropometry and by ultrasonography (US) are noninvasive and relatively nonexpensive methods for bedside assessment of the upper-arm compartments. However, these methods have not yet been validated in infants. Magnetic resonance imaging (MRI) may be used as gold standard to validate the measurements of the upper-arm compartments. Objective: To validate the upper-arm measurements by anthropometry and by US in preterm infants. Methods: A cohort of neonates consecutively admitted at the neonatal intensive care unit, appropriate for gestational age, with 33 weeks, without major congenital abnormalities and not subjected to diuretics or oxygen therapy, was assessed. Before the discharge, the upper-arm was blindly measured by anthropometry, US and MRI. The direct anthropometric parameters measured were: weight (W), length (L), head circumference (HC), mid-arm circumference (MAC), and tricipital skinfold thickness. The arm area (AA), arm muscle area (AMA) and arm fat area were calculated applying the methods proposed by Jeliffee & Jeliffee and by Rolland-Cachera. Using the sonolayer Toshiba SSH 140A and the probe PSH-7DLT 7Hz, the arm and muscle perimeters were measured by US, the arm and muscle areas included were automatically calculated, and the fat area was calculated by subtraction. The MR images were acquired on a 1.5-T Philips Gyroscan ACS-NT, Power-Track 1000 scanner, and a knee coil was chosen for the upper-arm measurements. For statistical analysis parametric and nonparametric methods were used as appropriate. Results: Thirty infants born with ( ±SD) 30.7 ±1.9 weeks of gestational age and weighing 1380 ±325g were included in the study; they were assessed at 35.4 ±1.1 weeks of corrected age, weighing 1786 ±93g. None of the anthropometric measurements are individually acceptable (r2 <0.5) for prediction of the measurements obtained by MRI. The best and simple alternative equation found is the equation for prediction of the AMA (r2 = 0.56), derived from the results of multiple regression analysis: AMARM = (W x 0.17) + (MAC x 5.2) – (L x 6) – 150, being the W expressed in g, and L and MAC in cm. None of the ultrasonographic measurements are acceptable (r2 <0.5) predictors for the measurements obtained by MRI. Conclusions: The measurements of the upper-arm by anthropometry and by US are not accurate predictors for the regional body composition in preterm appropriate for gestational age infants.
Resumo:
pp. 229-253