15 resultados para nitrate-nitrogen


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do ambiente, perfil de engenharia sanitária

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Doutor em Bioquímica, especialidade Bioquímica-Física, pela Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water is a limited resource for which demand is growing. Contaminated water from inadequate wastewater treatment provides one of the greatest health challenges as it restricts development and increases poverty in emerging and developing countries. Therefore, the connection between wastewater and human health is linked to access to sanitation and to human waste disposal. Adequate sanitation is expected to create a barrier between disposed human excreta and sources of drinking water. Different approaches to wastewater management are required for different geographical regions and different stages of economic governance depending on the capacity to manage wastewater. Effective wastewater management can contribute to overcome the challenges of water scarcity. Separate collection of human urine at its source is one promising approach that strongly reduces the economic and load demands on wastewater treatment plants (WWTP). Treatment of source-separated urine appears as a sanitation system that is affordable, produces a valuable fertiliser, reduces pollution of water resources and promotes health. However, the technical realisation of urine separation still faces challenges. Biological hydrolysis of urea causes a strong increase of ammonia and pH. Under these conditions ammonia volatilises which can cause odour problems and significant nitrogen losses. The above problems can be avoided by urine stabilisation. Biological nitrification is a suitable process for stabilisation of urine. Urine is a highly concentrated nutrient solution which can lead to strong inhibition effects during bacterial nitrification. This can further lead to process instabilities. The major cause of instability is accumulation of the inhibitory intermediate compound nitrite, which could lead to process breakdown. Enhanced on-line nitrite monitoring can be applied in biological source-separated urine nitrification reactors as a sustainable and efficient way to improve the reactor performance, avoiding reactor failures and eventual loss of biological activity. Spectrophotometry appears as a promising candidate for the development and application of on-line nitrite monitoring. Spectroscopic methods together with chemometrics are presented in this work as a powerful tool for estimation of nitrite concentrations. Principal component regression (PCR) is applied for the estimation of nitrite concentrations using an immersible UV sensor and off-line spectra acquisition. The effect of particles and the effect of saturation, respectively, on the UV absorbance spectra are investigated. The analysis allows to conclude that (i) saturation has a substantial effect on nitrite estimation; (ii) particles appear to have less impact on nitrite estimation. In addition, improper mixing together with instabilities in the urine nitrification process appears to significantly reduce the performance of the estimation model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted to obtain the phD degree in Biochemistry, specialty in Physical- Biochemistry, by the Faculdade de Ciências e Tecnologia from the Universidade Nova de Lisboa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thesis submitted for the degree of Ph. D. in Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

J Biol Inorg Chem (2008) 13:1321–1333 DOI 10.1007/s00775-008-0416-1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

J Biol Inorg Chem. 2008 Jun;13(5):737-53. doi: 10.1007/s00775-008-0359-6

Relevância:

20.00% 20.00%

Publicador:

Resumo:

J Biol Inorg Chem (2006) 11: 609–616 DOI 10.1007/s00775-006-0110-0

Relevância:

20.00% 20.00%

Publicador:

Resumo:

J Biol Inorg Chem (2004) 9: 791–799 DOI 10.1007/s00775-004-0573-9

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Engenharia Sanitária

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O Azoto (N): da ciência para a sociedade é um projecto de comunicação de ciência que tem por objecNvo consciencializar os jovens para as ameaças que o azoto (N) em excesso traz para a humanidade. Pode ser dividido em duas partes. Uma, de invesNgação, sobre a análise de resultados de uma consulta pública realizada entre professores, usando o método qualitaNvo do focus group, para compreender a sua sensibilidade e propostas de solução para minimizar o excesso de N no ambiente. Os resultados obNdos foram instrumentais para o desenvolvimento da segunda parte. Esta segunda parte é uma proposta de projecto a submeter ao Horizon 2020, no âm-­‐ bito da “Science with and for Society “. Nela se propõe uma abordagem educaNva trans-­‐disciplinar, conseguida através da interacção entre docentes do secundário, e do ensino superior, associação de pais e organizações cívicas não governamentais, com vista à consciencialização dos jovens para as ameaças do N em excesso no meio ambiente, fazendo o enquadramento cien@fico e fornecendo abordagens tecnológi-­‐ cas. A inovação desta proposta baseia-­‐se: (i) no acompanhamento e desenvolvimen-­‐ to profissional dos docentes do secundário, (ii) na moNvação dos estudantes a de-­‐ senvolver o seu próprio estudo e pesquisa com a tutoria dos docentes, da escola e do ensino superior, e (iii) no desenvolvimento de capacidades de comunicação dos jo-­‐ vens para exercer uma cidadania acNva em prol da minimização das ameaças do N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this thesis is to study the developing fields of aquaponics and its potential for aquaculture wastewater treatment and human urine treatment. Aquaponics is a food production system which combines fish farming (aquaculture) with soilless crop farming (hydroponics). In this thesis the concept of aquaponics and the underlying processes are explained. Research on aquaculture wastewater and human urine wastewater is reviewed and its potential application with aquaponic systems is studied. An overview of the different types of aquaponic systems and current research on the field is also presented. A case study was conducted in a farm in Askeröd, Sweden, which involved building two aquaponic systems (System 1 and System 2) and a human urine-based aquaponic system (System 3), with different degrees of component complexity and sizes. The design, building and monitoring of System 1, System 2 and System 3 was documented and described in detail. Four day experiments were conducted which tested the evolution in concentration of Total Ammonia Nitrogen (NH4+/NH3), Nitrite (NO2-), Nitrate (NO3-), Phosphate (PO43-), and Dissolved Oxygen (O2) after an initial nutrient input. The goal was to assess the concentrations of these parameters after four days and compare them with relevant literature examples in the aquaculture industry and in source-separated urine research. Neither of the two aquaponic systems (System 1 and System 2) displayed all of the parameter concentrations in the last day of testing below reference values found in literature. The best performing of the aquaponic systems was the more complex system (System 2) combining the hydroponic Nutrient Film Technique with a Deep Water Culture component, with a Total Ammonia Nitrogen concentration of 0,20 mg/L, a Nitrite concentration of 0,05 mg/L, a Nitrate concentration of 1,00-5,00 mg/L, a Phosphate concentration of <0,02 mg/L and a Dissolved Oxygen concentration of 8,00 mg/L. The human urine-based aquaponic system (System 3) underperformed in achieving the reference concentration values in literature for most parameters. The removal percentage between the higher recorded values after the input addition and the final day of testing was calculated for two literature examples of separated urine treatment and System 3. The system had a removal percentage of 75% for Total Ammonia Nitrogen, 98% for Nitrite, 25% for Nitrate and 50% for Phosphate. These percentages still underperformed literature examples in most of the tested parameters. The results gathered allowed to conclude that while aquaculture wastewater treatment and human urine treatment is possible with aquaponics systems, overall these did not perform as well as some examples found in recirculating aquaculture systems and source-separated urine treatment literature. However, better measuring techniques, longer testing periods and more research is recommended in this field in order to draw an improved representative conclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.