17 resultados para neural algorithms
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologiea da Universidade Nova de Lisboa, para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
The principal topic of this work is the application of data mining techniques, in particular of machine learning, to the discovery of knowledge in a protein database. In the first chapter a general background is presented. Namely, in section 1.1 we overview the methodology of a Data Mining project and its main algorithms. In section 1.2 an introduction to the proteins and its supporting file formats is outlined. This chapter is concluded with section 1.3 which defines that main problem we pretend to address with this work: determine if an amino acid is exposed or buried in a protein, in a discrete way (i.e.: not continuous), for five exposition levels: 2%, 10%, 20%, 25% and 30%. In the second chapter, following closely the CRISP-DM methodology, whole the process of construction the database that supported this work is presented. Namely, it is described the process of loading data from the Protein Data Bank, DSSP and SCOP. Then an initial data exploration is performed and a simple prediction model (baseline) of the relative solvent accessibility of an amino acid is introduced. It is also introduced the Data Mining Table Creator, a program developed to produce the data mining tables required for this problem. In the third chapter the results obtained are analyzed with statistical significance tests. Initially the several used classifiers (Neural Networks, C5.0, CART and Chaid) are compared and it is concluded that C5.0 is the most suitable for the problem at stake. It is also compared the influence of parameters like the amino acid information level, the amino acid window size and the SCOP class type in the accuracy of the predictive models. The fourth chapter starts with a brief revision of the literature about amino acid relative solvent accessibility. Then, we overview the main results achieved and finally discuss about possible future work. The fifth and last chapter consists of appendices. Appendix A has the schema of the database that supported this thesis. Appendix B has a set of tables with additional information. Appendix C describes the software provided in the DVD accompanying this thesis that allows the reconstruction of the present work.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
The computations performed by the brain ultimately rely on the functional connectivity between neurons embedded in complex networks. It is well known that the neuronal connections, the synapses, are plastic, i.e. the contribution of each presynaptic neuron to the firing of a postsynaptic neuron can be independently adjusted. The modulation of effective synaptic strength can occur on time scales that range from tens or hundreds of milliseconds, to tens of minutes or hours, to days, and may involve pre- and/or post-synaptic modifications. The collection of these mechanisms is generally believed to underlie learning and memory and, hence, it is fundamental to understand their consequences in the behavior of neurons.(...)
Resumo:
Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering
Resumo:
Thesis submitted in the fulfillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
Dissertation presented to obtain the Ph.D degree in Neuroscience Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry, Neuroscience
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology, Computational Biology.
Resumo:
Understanding how the brain works will require tools capable of measuring neuron elec-trical activity at a network scale. However, considerable progress is still necessary to reliably increase the number of neurons that are recorded and identified simultaneously with existing mi-croelectrode arrays. This project aims to evaluate how different materials can modify the effi-ciency of signal transfer from the neural tissue to the electrode. Therefore, various coating materials (gold, PEDOT, tungsten oxide and carbon nano-tubes) are characterized in terms of their underlying electrochemical processes and recording ef-ficacy. Iridium electrodes (177-706 μm2) are coated using galvanostatic deposition under different charge densities. By performing electrochemical impedance spectroscopy in phosphate buffered saline it is determined that the impedance modulus at 1 kHz depends on the coating material and decreased up to a maximum of two orders of magnitude for PEDOT (from 1 MΩ to 25 kΩ). The electrodes are furthermore characterized by cyclic voltammetry showing that charge storage capacity is im-proved by one order of magnitude reaching a maximum of 84.1 mC/cm2 for the PEDOT: gold nanoparticles composite (38 times the capacity of the pristine). Neural recording of spontaneous activity within the cortex was performed in anesthetized rodents to evaluate electrode coating performance.
Resumo:
Remote sensing - the acquisition of information about an object or phenomenon without making physical contact with the object - is applied in a multitude of different areas, ranging from agriculture, forestry, cartography, hydrology, geology, meteorology, aerial traffic control, among many others. Regarding agriculture, an example of application of this information is regarding crop detection, to monitor existing crops easily and help in the region’s strategic planning. In any of these areas, there is always an ongoing search for better methods that allow us to obtain better results. For over forty years, the Landsat program has utilized satellites to collect spectral information from Earth’s surface, creating a historical archive unmatched in quality, detail, coverage, and length. The most recent one was launched on February 11, 2013, having a number of improvements regarding its predecessors. This project aims to compare classification methods in Portugal’s Ribatejo region, specifically regarding crop detection. The state of the art algorithms will be used in this region and their performance will be analyzed.