13 resultados para nerve fiber regeneration
Resumo:
Unlike injury to the peripheral nervous system (PNS), where injured neurons can trigger a regenerative program that leads to axonal elongation and in some cases proper reinnervation, after injury to the central nervous system (CNS) neurons fail to produce the same response. The regenerative program includes the activation of several injury signals that will lead to the expression of genes associated with axonal regeneration. As a consequence, the spawned somatic response will ensure the supply of molecular components required for axonal elongation. The capacity of some neurons to trigger a regenerative response has led to investigate the mechanisms underlying neuronal regeneration. Thus, non-regenerative models (like injury to the CNS) and regenerative models (such as injury to the PNS) were used to understand the differences underlying those two responses to injury. To do so, the regenerative properties of dorsal root ganglion (DRG) neurons were addressed. This particular type of neurons possesses two branches, a central axon, that has a limited capacity to regenerate; and a peripheral axon, where regeneration can occur over long distances. In the first paradigm used to understand the neuronal regeneration mechanisms, we evaluated the activation of injury signals in a non-regenerative model. Injury signals include the positive injury signals, which are described as being enhancers of axonal regeneration by activating several transcription factors. The currently known positive injury signals are ERK, JNK and STAT3. To evaluate whether the lack of regeneration following injury to the central branch of DRG neurons was due to inactivation of these signals, activation of the transcription factors pELK-1, p-c-jun (downstream targets of ERK and JNK, respectively) and pSTAT3 were examined. Results have shown no impairment in the activation of these signals. As a consequence, we further proceed with evaluation of other candidates that could participate in axonal regeneration failure. By comparing the protein profiles that were triggered following either injury to the central branch of DRG neurons or injury to their peripheral branch, we were able to identify high levels of GSK3-β, ROCKII and HSP-40 after injury to the central branch of DRG neurons. While in vitro knockdown of HSP-40 in DRG neurons showed to be toxic for the cells, evaluation of pCRMP2 (a GSK3-β downstream target) and pMLC (a ROCKII downstream target), which are known to impair axonal regeneration, revealed high levels of both proteins following injury to the central branch when comparing with injury to their peripheral one. Altogether, these results suggest that activation of positive injury signals is not sufficient to elicit axonal regeneration; HSP-40 is likely to participate in the cell survival program; whereas GSK3-β and ROCKII activity may condition the regenerative capacity following injury to the nervous system.(...)
Resumo:
Beaver only had been found in Portugal in a Chalcolithic locality, the Vila Nova de S. Pedro castrum. It has now been identified in the Upper Paleolithic (Solutrean) from Gruta do Caldeirão, near Tomar. The species has been found recently at «Gruta do Almonda»; 4 teeth were collected in bed C, older than a Solutrean sequence (see Anexo for details). The species seems to have been rare, as it was also the case with portuguese Miocene Castoridae Enroxenomys minutus and Chalicomys jaegeri. If account is taken of the presence in the Middle Ages until Castille of words meaning beaver (relared to the popular latin Fiber/Biber), it is obvious that these animais still existed then. Such nouns were largely predominant over rhe rather erudite latin (greek deríved) words as Castor,-óris and derived ones, as it could be expected. This allowed us to recognize that veiro should be the corresponding word with Fiber affinities in archaic portuguese. It was previously supposed to mean only expensive furs then imported into Portugal. Indeed it was also a zoonym. Anywày, beaver should be scarce by XIIIth century since it is not included in the quite detailed price list imposed by the «Lei da Almotaçaria» from December 26, 1253 (see Quadro II). Toponyms in veiro and derived words (fig. 2; Quadro III) (plural, feminines, diminutives, inhabited places) give a resrrictive view of rhe Middle Age distribution. Some of them are certainly older than Portugal itself (firsr half of XIlth cenrury); others existed by the XIVth century bur were probably older. Some rare toponyms seem to be derived from the erudite latin Castor,-óris. Nothing suggests that these words were still in use as zoonyms during the Middle Ages. All toponyms are located in regions near rivers and other freshwaters ecologically suitable for beavers, so we can approximately retrace its former, Middle Age disrribution in Portugal (fig. 2; Quadro III). Most of them are locared in the Center-West and Northwest of Portugal, with a suitable c1imate (rainfall in general over 800 mílimerers per year); the only sure geographical exception is Veiros, in Alto Alentejo province, in a region with comparable precipitations and less dry climate conditions than mosr of the territories South of rhe Tagus. There are less and less of these toponyms towards rhe South and the inner part of the country, and they are enrirely lacking in all drier regions from Trás-os-Montes, Beira, Alentejo beyond Tagus' basin, and in Algarve. Nothing suggests beavers lived there, No post-medieval toponym is known, nor any reference after middle XVth century. No such locality was at, or close by to, any frontier. Hence the hypothesis of veiro (et al.} as meaning but points where expensive furs (supposedly known as veiros in general but without c1early saying from what animal they were obrained from) is to be discarded. During the Middle Ages, beaver discriburion concerned all the main river basins from Minho to Tagus ones. Quite rarefied in rhe XIIIth, the beavers may have disappeared from Portugal during the XVth century. Ecological requiremenrs restricted their former distriburion. Vulnerability to natural causes (i.e., severe drought) and to human pressure may have accounted heavily for this species' extinction. Last (1446) reference for Portugal known to us suggests the species was by then almost extinct.
Resumo:
IEEE Electron Device Letters, VOL. 29, NO. 9,
Resumo:
Beaver only had been found in Portugal in a Chalcolithic locality, the Vila Nova de S. Pedro castrum. It has now been idenrified in the Upper Paleolithic (Solurrean) from Gruta do Caldeirão, near Tomar. The species has been found recently at «Gruta do Almonda»; 4 teeth were collected in bed C, older than a Solutrean sequence (see Anexo for details). The species seems to have been rare, as it was also the case with portuguese miocene Castoridae Enroxenomys minutus and Chalicomys jaegeri. If account is taken of the presence in the Middle Ages until Castille of words meaning beaver (related to the popular latin Fiber/Biber), it is obvious that these animals still existed then. Such nouns were largely predominant over the rather erudite larin (greek derived) words as Castor, -óris and derived ones, as it could be expected. This allowed us to recognize that veiro should be the corresponding word with Fiber affinities in archaic portuguese. It was previously supposed to mean only expensive furs then imported into Portugal. Indeed it was also a zoonym. Anyway, beaver should be scarce by XIIIth century since it is not included in the quite detailed price list imposed by the «Lei da Almotaçaria» from December 26, 1253 (see Quadro II). Toponyms in veiro and derived words (fig. 2; Quadro III) (plural, feminines, diminutives, inhabited places) give a restrictive view of the Middle Age distribution. Some of them are certainly older than Portugal itself (first half of XIIth century); others existed by the XIVth century but were probably older. Some rare toponyms seem to be derived from rhe erudite latin Castor, -óris. Nothing suggests that these words were still in use as zoonyms during the Middle Ages. All toponyms are located in regions near rivers and other freshwaters ecologically suitable for beavers, so wecan approximately retrace irs former, Middle Age distribution in Portugal (fig. 2; Quadro III). Most of them are located in the Center-West and Northwest of Portugal, with a suitable c1imate (rainfall in general over 800 milimeters per year); the only sure geographical exception is Veiros, in Alto Alentejo province, in a region with comparable precipitations and less dry climare conditions than most of the territories South of the Tagus. There are less and less of these toponyms towards the South and the inner part of the country, and they are enrirely lacking in ali drier regions from Trás-os-Montes, Beira, Alentejo beyond Tagus' basin, and in Algarve. Nothing suggests beavers lived there, No pose-medieval toponym is known, nor any reference after middle XVth century. No such locality was at, or close by to, any frontier. Hence the hypothesis of veiro (e: al.) as meaning but points where expensive furs(supposedly known as veiros in general but without clearly saying from what animal they were obtained from) is to be discarded. During the Middle Ages, beaver distribution concerned all the main river basins from Minho to Tagus ones. Quice racefied in the XIIIth, the beavers may have disappeared from Portugal during the XVth century. Ecological requirements restricted their former distribution. Vulnerability to natural causes (i.e., severe drought) and to human pressure may have accounted heavily for this species extinction. Last (1446) reference for Portugal known to us suggests the species was by then almost extinct.
Resumo:
FCM: UC Fisiologia - Teses de Doutoramento
Resumo:
Dissertation for obtaining the Master degree in Membrane Engineering
Resumo:
Functional regeneration of organs upon injury is a key process for animals survival. Contrary to humans, some vertebrates are remarkably competent in regenerating after acute organ or appendage lesions. This advantageous skill allows overcoming limitations in repair even in adult stages, when tissues are fully developed, via a process of epimorphic regeneration. One such organism is the zebrafish, which can regenerate several organs, namely its heart, retina, spinal cord and fins. (...)
Resumo:
Deep-eutectic solvents (DES) are considered novel renewable and biodegradable solvents, with a cheap and easy synthesis, without waste production. Later it was discovered a new subclass of DES that even can be biocompatible, since their synthesis uses primary metabolites such as amino acids, organic acids and sugars, from organisms. This subclass was named natural deep-eutectic solvents (NADES). Due to their properties it was tried to study the interaction between these solvents and biopolymers, in order to produce functionalized fibers for biomedical applications. In this way, fibers were produced by using the electrospinning technique. However, it was first necessary to study some physical properties of NADES, as well as the influence of water in their properties. It has been concluded that the water has a high influence on NADES properties, which can be seen on the results obtained from the rheology and viscosity studies. The fluid dynamics had changed, as well as the viscosity. Afterwards, it was tested the viability of using a starch blend. First it was tested the dissolution of these biopolymers into NADES, in order to study the viability of their application in electrospinning. However the results obtained were not satisfactory, since the starch polymers studied did not presented any dissolution in any NADES, or even in organic solvents. In this way it was changed the approach, and it was used other biocompatible polymers. Poly(ethylene oxide), poly(vinyl alcohol) and gelatin were the others biopolymers tested for the electrospinning, with NADES. All polymers show good results, since it was possible to obtain fibers. However for gelatin it was used only eutectic mixtures, containing active pharmaceutical ingredients (API’s), instead of NADES. For this case it was used mandelic acid (antimicrobial properties), choline chloride, ibuprofen (anti-inflammatory properties) and menthol (analgesic properties). The polymers and the produced fibers were characterized by scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With the help of these techniques it was possible to conclude that it was possible to encapsulate NADES within the fibers. Rheology it was also study for poly(ethylene oxide) and poly(vinyl alcohol), in a way to understand the influence of polymer concentration, on the electrospinning technique. For the gelatin, among the characterization techniques, it was also performed cytotoxicity and drug release studies. The gelatin membranes did not show any toxicity for the cells, since their viability was maintained. Regarding the controlled release profile experiment no conclusion could be drawn from the experiments, due to the rapid and complete dissolution of the gelatin in the buffer solution. However it was possible to quantify the mixture of choline chloride with mandelic acid, allowing thus to complete, and confirm, the information already obtained for the others characterization technique.
Resumo:
Dissertation presented to obtain the PhD degree in Biochemistry
Resumo:
The use, manipulation and application of electrical currents, as a controlled interference mechanism in the human body system, is currently a strong source of motivation to researchers in areas such as clinical, sports, neuroscience, amongst others. In electrical stimulation (ES), the current applied to tissue is traditionally controlled concerning stimulation amplitude, frequency and pulse-width. The main drawbacks of the transcutaneous ES are the rapid fatigue induction and the high discomfort induced by the non-selective activation of nervous fibers. There are, however, electrophysiological parameters whose response, like the response to different stimulation waveforms, polarity or a personalized charge control, is still unknown. The study of the following questions is of great importance: What is the physiological effect of the electric pulse parametrization concerning charge, waveform and polarity? Does the effect change with the clinical condition of the subjects? The parametrization influence on muscle recruitment can retard fatigue onset? Can parametrization enable fiber selectivity, optimizing the motor fibers recruitment rather than the nervous fibers, reducing contraction discomfort? Current hardware solutions lack flexibility at the level of stimulation control and physiological response assessment. To answer these questions, a miniaturized, portable and wireless controlled device with ES functions and full integration with a generic biosignals acquisition platform has been created. Hardware was also developed to provide complete freedom for controlling the applied current with respect to the waveform, polarity, frequency, amplitude, pulse-width and duration. The impact of the methodologies developed is successfully applied and evaluated in the contexts of fundamental electrophysiology, psycho-motor rehabilitation and neuromuscular disorders diagnosis. This PhD project was carried out in the Physics Department of Faculty of Sciences and Technology (FCT-UNL), in straight collaboration with PLUX - Wireless Biosignals S.A. company and co-funded by the Foundation for Science and Technology.
Resumo:
Several studies have demonstrated that although the structure of the adult and larval zebrafish caudal fin is different, there are similarities at the cellular and molecular level that turn larval zebrafish fin fold a useful model to study the basic principles of regeneration. In this process, while the essential role for Hedgehog (Hh) signaling is well established in the adult zebrafish caudal fin system, its involvement in juvenile tissue regeneration is still unknown. The aim of this Master thesis was therefore to evaluate the contribution of the Hh signaling pathway to the larval zebrafish fin fold regeneration process. Accordingly, we analyzed the expression of several Hh signaling components through in situ hybridization. Here, we showed that several of these genes are effectively expressed in the larval regenerating fin tissue, suggesting a role for Hh signaling also during larval regeneration. However, divergence in the regulation of few Hh signaling components appears to exist between the adult and larval zebrafish fin regeneration processes. Nevertheless, similarly to adult caudal fin regeneration, when Hh signaling was blocked, by using cyclopamine, the larval fin fold regenerative outgrowth is severely impaired. Since larval zebrafish fin fold is ciliated, and primary cilia are closely related to Hh signaling regulation in vertebrate systems, we further addressed the role of primary cilia during larval fin fold regeneration process. To this end, we used the zebrafish iguana mutant, in which primary cilia are not formed, to study the modulation of Hh signaling expression during larval fin fold regeneration in the absence of primary cilia. Here, we found that several genes were expressed with a delay, coincident with the delay in the mutant fin fold regeneration observed in previous work. We show that Hh signaling in the fin fold is crucial to promote cell proliferation. When Hh signaling is blocked using cyclopamine there is a strong blockage of cell proliferation and regeneration is also blocked. Surprisingly, in iguana mutants where Hh signaling is impaired but not totally blocked, cell proliferation is not detected but regeneration still occurs. This raises the question about the requirement of cell proliferation in larvae fin fold regeneration. By blocking the cell cycle using aphidicolin we demonstrate that cell proliferation is not necessary for zebrafish larvae fin fold regeneration.
Resumo:
This work was developed in the context of the MIT Portugal Program, area of Bioengineering Systems, in collaboration with the Champalimaud Research Programme, Champalimaud Center for the Unknown, Lisbon, Portugal. The project entitled Dynamics of serotonergic neurons revealed by fiber photometry was carried out at Instituto Gulbenkian de Ciência, Oeiras, Portugal and at the Champalimaud Research Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
Resumo:
RESUMO: Na clínica, a recuperação funcional que se segue a uma lesão nervosa raramente é atingida na sua totalidade. A reinervação, quer motora, quer sensitiva, ocorre geralmente com maior ou menor deficit. Interessa, então, identificar os factores que podem interferir na regeneração nervosa. O neurónio é a unidade anatómica fundamental do sistema nervoso periférico e é muito vulnerável à isquemia pela grande distância que existe entre o corpo neuronal e a extensão do axónio, que pode ser de apenas alguns milímetros ou até atingir um metro. É, por isso, fundamental o estudo da vascularização do nervo periférico e da sua influência na regeneração nervosa. O resultado deste estudo pode levar ao desenvolvimento de técnicas cirúrgicas que criem as condições que garantam, por sua vez, a revascularização precoce do nervo periférico em caso de lesão, ou mesmo em caso de doenças, nas quais a vascularização do nervo está alterada como, por exemplo, na neuropatia diabética. O estudo da vascularização do nervo periférico realizou-se através da investigação da vascularização do nervo mediano do cadáver humano, pela investigação da vascularização do nervo isquiático do rato Wistar e do Plexo Braquial (PB) do mesmo. A vascularização do PB do rato não é muito diferente daquela que é reportada na espécie humana, existindo uma homologia entre o rato e o Homem no que diz respeito à morfologia e à vascularização do PB. Através da comparação angiomorfológica entre o nervo isquiático do rato e o nervo mediano humano, concluíu-se que a microvascularização do nervo isquiático do rato e do mediano humano são muito semelhantes, o que suporta a utilização do rato como modelo experimental de lesões do nervo mediano humano. Para a avaliação da influência da vascularização na regeneração nervosa foi feita a análise da eficácia de enxerto de tubo de membrana amniótica humana imunologicamente inerte, de enxerto de veia jugular externa autóloga e de auto-enxerto de nervo, na reparação de um defeito de 10 milímetros no nervo isquiático do rato, na presença de um fornecimento vascular axial, comparando-se com os mesmos procedimentos em estudos realizados anteriormente, sem suprimento vascular. Os ratos foram avaliados funcionalmente através do estudo das pegadas, da electroneurografia e da força de flexão ao nível do tornozelo, e estruturalmente, através das avaliações histológicas e morfométricas, da taxa de recuperação do peso dos músculos gastrocnémio e solhear e da marcação axonal retrógrada com True Blue às 4, 8 e 12 semanas. Os nervos reconstruídos apresentaram uma arquitectura normal, incluindo a arquitectura vascular. A membrana amniótica foi bem tolerada, persistindo imunologicamente em torno do nervo até à 12.ª semana. Concluiu-se também que, na presença de um suprimento vascular axial local, a membrana amniótica humana e as veias autólogas são, pelo menos, tão eficazes como os auto-enxertos nervosos na reconstrução de defeitos nervosos de 10 milímetros.--------------------------------------ABSTRACT: At the clinic, the functional recovery that follows a nerve lesion is rarely achieved in full. The neuron is very vulnerable to ischemia that’s why it is essential to study the vascularization of the peripheral nerve and its influence on the nerve’s regeneration. The outcome of this study may lead to the development of surgical techniques that create the conditions which are necessary to ensure an early revascularization in case of a peripheral nerve injury. This study investigated the vascularization of the median nerve of the human cadaver and the vascularization of the sciatic nerve of the Wistar rat and his Brachial Plexus (BP) through animal experimentation. The mouse's BP vascularization is not so different from the one that is reported in the human species. An angiomorphological comparison between the mouse sciatic nerve and the human median nerve concluded that the microvascularizations are very similar, which supports the use of the mouse as an experimental model for the study of median nerve’s lesions. To evaluate the influence of vascularization in the nerve’s regeneration, it was made an assessment of the effectiveness of the human amniotic immuno-inert membrane grafts, of the autologous external jugular vein grafts and of the nerve auto-graft in the repair of a defect of 10 mm on the sciatic nerve of the rat, in the presence of an axial vascular supply, comparing these with the same procedures that were adopted in the previous studies, without vascular supply. The rats were functionally assessed and structurally evaluated (through histological and morphometric evaluations) at the 4.th, 8.th and 12.th weeks. The nerves reconstructed presented a normal architecture, including vascular architecture. The amniotic membrane was well-tolerated immunologically, persisting around the nerve until the 12.th week. As a result, it was also concluded that in the presence of a local axial vascular supply, the human amniotic membrane and the autologous veins are, at least, as effective as the nerve auto-grafts in the reconstruction of the nerve’s defects of 10 mm.