16 resultados para machine fault diagnosis
Resumo:
Nowadays, many of the manufactory and industrial system has a diagnosis system on top of it, responsible for ensuring the lifetime of the system itself. It achieves this by performing both diagnosis and error recovery procedures in real production time, on each of the individual parts of the system. There are many paradigms currently being used for diagnosis. However, they still fail to answer all the requirements imposed by the enterprises making it necessary for a different approach to take place. This happens mostly on the error recovery paradigms since the great diversity that is nowadays present in the industrial environment makes it highly unlikely for every single error to be fixed under a real time, no production stop, perspective. This work proposes a still relatively unknown paradigm to manufactory. The Artificial Immune Systems (AIS), which relies on bio-inspired algorithms, comes as a valid alternative to the ones currently being used. The proposed work is a multi-agent architecture that establishes the Artificial Immune Systems, based on bio-inspired algorithms. The main goal of this architecture is to solve for a resolution to the error currently detected by the system. The proposed architecture was tested using two different simulation environment, each meant to prove different points of views, using different tests. These tests will determine if, as the research suggests, this paradigm is a promising alternative for the industrial environment. It will also define what should be done to improve the current architecture and if it should be applied in a decentralised system.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
Dissertation to obtain the degree of Master in Electrical and Computer Engineering
Resumo:
Due to usage conditions, hazardous environments or intentional causes, physical and virtual systems are subject to faults in their components, which may affect their overall behaviour. In a ‘black-box’ agent modelled by a set of propositional logic rules, in which just a subset of components is externally visible, such faults may only be recognised by examining some output function of the agent. A (fault-free) model of the agent’s system provides the expected output given some input. If the real output differs from that predicted output, then the system is faulty. However, some faults may only become apparent in the system output when appropriate inputs are given. A number of problems regarding both testing and diagnosis thus arise, such as testing a fault, testing the whole system, finding possible faults and differentiating them to locate the correct one. The corresponding optimisation problems of finding solutions that require minimum resources are also very relevant in industry, as is minimal diagnosis. In this dissertation we use a well established set of benchmark circuits to address such diagnostic related problems and propose and develop models with different logics that we formalise and generalise as much as possible. We also prove that all techniques generalise to agents and to multiple faults. The developed multi-valued logics extend the usual Boolean logic (suitable for faultfree models) by encoding values with some dependency (usually on faults). Such logics thus allow modelling an arbitrary number of diagnostic theories. Each problem is subsequently solved with CLP solvers that we implement and discuss, together with a new efficient search technique that we present. We compare our results with other approaches such as SAT (that require substantial duplication of circuits), showing the effectiveness of constraints over multi-valued logics, and also the adequacy of a general set constraint solver (with special inferences over set functions such as cardinality) on other problems. In addition, for an optimisation problem, we integrate local search with a constructive approach (branch-and-bound) using a variety of logics to improve an existing efficient tool based on SAT and ILP.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Thesis for the Master degree in Structural and Functional Biochemistry
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e Computadores especialidade: Robótica e Manufactura Integrada
Resumo:
This dissertation is presented to obtain a Master degree in Structural and Functional Biochemistry
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Doutor em Estatística e Gestão do Risco
Resumo:
Breast cancer is the most common type of cancer among women all over the world. An important issue that is not commonly addressed in breast cancer imaging literature is the importance of imaging the underarm region—where up to 80% of breast cancer cells can metastasise to. The first axillary lymph nodes to receive drainage from the primary tumour in the breast are called Sentinel Node. If cancer cells are found in the Sentinel Node, there is an increased risk of metastatic breast cancer which makes this evaluation crucial to decide what follow-up exams and therapy to follow. However, non-invasive detection of cancer cells in the lymph nodes is often inconclusive, leading to the surgical removal of too many nodes which causes adverse side-effects for patients. Microwave Imaging is one of the most promising non-invasive imaging modalities for breast cancer early screening and monitoring. This novel study tests the feasibility of imaging the axilla region by means of the simulation of an Ultra-Wideband Microwave Imaging system. Simulations of such system are completed in several 2D underarm models that mimic the axilla. Initial imaging results are obtained by means of processing the simulated backscattered signals by eliminating artefacts caused by the skin and beamforming the processed signals in order to time-align all the signals recorded at each antenna. In this dissertation several image formation algorithms are implemented and compared by visual inspection of the resulting images and through a range of performance metrics, such as Signal-to-Clutter Ratio and FullWidth Half Maximum calculations. The results in this study showed that Microwave Imaging is a promising technique that might allow to identify the presence and location of metastasised cancer cells in axillary lymph nodes, enabling the non-invasive evaluation of breast cancer staging.
Resumo:
Human Activity Recognition systems require objective and reliable methods that can be used in the daily routine and must offer consistent results according with the performed activities. These systems are under development and offer objective and personalized support for several applications such as the healthcare area. This thesis aims to create a framework for human activities recognition based on accelerometry signals. Some new features and techniques inspired in the audio recognition methodology are introduced in this work, namely Log Scale Power Bandwidth and the Markov Models application. The Forward Feature Selection was adopted as the feature selection algorithm in order to improve the clustering performances and limit the computational demands. This method selects the most suitable set of features for activities recognition in accelerometry from a 423th dimensional feature vector. Several Machine Learning algorithms were applied to the used accelerometry databases – FCHA and PAMAP databases - and these showed promising results in activities recognition. The developed algorithm set constitutes a mighty contribution for the development of reliable evaluation methods of movement disorders for diagnosis and treatment applications.
Resumo:
Machine ethics is an interdisciplinary field of inquiry that emerges from the need of imbuing autonomous agents with the capacity of moral decision-making. While some approaches provide implementations in Logic Programming (LP) systems, they have not exploited LP-based reasoning features that appear essential for moral reasoning. This PhD thesis aims at investigating further the appropriateness of LP, notably a combination of LP-based reasoning features, including techniques available in LP systems, to machine ethics. Moral facets, as studied in moral philosophy and psychology, that are amenable to computational modeling are identified, and mapped to appropriate LP concepts for representing and reasoning about them. The main contributions of the thesis are twofold. First, novel approaches are proposed for employing tabling in contextual abduction and updating – individually and combined – plus a LP approach of counterfactual reasoning; the latter being implemented on top of the aforementioned combined abduction and updating technique with tabling. They are all important to model various issues of the aforementioned moral facets. Second, a variety of LP-based reasoning features are applied to model the identified moral facets, through moral examples taken off-the-shelf from the morality literature. These applications include: (1) Modeling moral permissibility according to the Doctrines of Double Effect (DDE) and Triple Effect (DTE), demonstrating deontological and utilitarian judgments via integrity constraints (in abduction) and preferences over abductive scenarios; (2) Modeling moral reasoning under uncertainty of actions, via abduction and probabilistic LP; (3) Modeling moral updating (that allows other – possibly overriding – moral rules to be adopted by an agent, on top of those it currently follows) via the integration of tabling in contextual abduction and updating; and (4) Modeling moral permissibility and its justification via counterfactuals, where counterfactuals are used for formulating DDE.